The final EURIDICE Meeting

Physics Highlights from KLOE

Caterina Bloise Kazimierz, August 24, 2006

KLOE integrated luminosity at the ϕ peak

- 2001-2005 L_{int} = 2482 pb⁻¹
- 2004-2005 L_{int} = 1990 pb⁻¹
- Best conditions: Sept/Oct/Nov 2005 ⇒ 179/189/194 pb⁻¹

stable luminosity, beam energy and backgrounds

• Dec 5th end of run at 1020 MeV, start off peak run

Off-peak data taking

	Data ac	quisitio	n Dec 5 -	Mar 16	, 2006	
√s	(MeV)	1023.	1030.	1018.	1010.	1000.
L	_{nt} (pb ⁻¹)	10.4	11.4	10.2	11.0	233.5

• 4 points (10 pb⁻¹) in the 1010-1030 MeV region:

- Calibration of KLOE energy scale, line shape
- Model dependence of the f_0 production vs \sqrt{s}
- $\sigma(e^+e^- \rightarrow \omega \pi^0)$, ϕ leptonic widths
- 200 pb⁻¹ at $\sqrt{s} = 1000$ MeV:
 - Measurement of the $\sigma(\pi^+\pi^-\gamma)$ down to $2m_{\pi}$
 - Two-photon physics with KLOE: $\gamma\gamma \rightarrow \eta$, $\pi\pi$

Kaon Physics: results from 2001-2002 data

$K_{\rm S} K_{\rm L} \rightarrow \pi^+ \pi^- \pi^+ \pi$	- Quantum Interference	Draft in preparation	
$\begin{split} & \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0} \pi^{0} \\ & \mathrm{K}_{\mathrm{S}} \rightarrow \pi e \nu \\ & \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0} \end{split}$	UL on BR at 10 ⁻⁷ BR to 1.3%, form factor slope, charge asymmetry $\Gamma(\pi^+\pi^-)/\Gamma(\pi^0\pi^{0})$ to ~0.25%	PLB 619 (2005) 61 PLB 636 (2006) 173 Accepted by EPJC	PDG06 PDG06 PDG06
$K_L \rightarrow \pi l \nu, \pi \pi \pi$	Absolute BR's to ~ 0.5% K _L lifetime from $\Sigma(BR)=1$	PLB 632 (2006) 43	PDG06
K _L lifetime	from $K_L \rightarrow \pi^0 \pi^0 \pi^0$ to ~ 0.5%	PLB 626 (2005) 15	PDG06
$K_L \rightarrow \pi e \nu$	Form factor slopes	PLB 636 (2006) 166	PDG06
$K_L \rightarrow \pi e \nu \gamma$	BR to $\sim 2 \%$	Preliminary	
$K_L \rightarrow \pi^+ \pi^-$	BR to 1.1%	PLB 638 (2006) 140	PDG06
$K_L \rightarrow \gamma \gamma$	$\Gamma(\gamma \gamma)/\Gamma(\pi^0 \pi^0 \pi^0)$ to 1.1%	PLB 566 (2003) 61	
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	BR to 1.4%	PLB 597 (2004) 139	
$K^+ \rightarrow \mu^+ \nu$	Absolute BR to $\sim 0.27\%$	PLB 632 (2006) 76	PDG06
$K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$	Absolute BR's to $\sim 1.5\%$	Preliminary	
K [±] lifetime	two independent measurements	Preliminary	
C. Bloise	Kazimierz, August 24, 2006		4

Latest results: BR($K_L \rightarrow \pi^+\pi^-$)

Kinematics for signal separation $K_L \rightarrow \pi \mu \nu$ events in the same sample for K_L counting

BR = $(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$

PLB 638 (2006) 140

 $\sigma_{rel}: 1.1\% = 0.6\%_{stat} \oplus 0.9\%_{syst}$

- in agreement with KTeV 2004 BR = $(1.975 \pm 0.012) \times 10^{-3}$
- it confirms the $4-\sigma$ discrepancy with old measurements $(2.080 \pm 0.025) \times 10^{-3}$

• we get:

 $|\eta_{+-}| = (2.216 \pm 0.013) \times 10^{-3}$ [BR(K_S $\rightarrow \pi\pi$) and τ_L from KLOE, τ_S from PDG04]

$$K_S \rightarrow \pi ev$$
: BR and A_S $PL_{B_{636}(2006)_{173}}$

Charge asymmetry

$$A_S = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

first measurement $\delta A_s \sim 3 \times 10^{-3}$ with 2.5 fb⁻¹ **K**_{Se3} form factor slope

 $\lambda_{+} = (33.9 \pm 4.1) \times 10^{-3}$

first meas., compatible with K_L

$$K_S \rightarrow \pi e \nu : \Delta S = \Delta Q$$
 rule

$$I + 4 \operatorname{Re}(x_{+}) = \frac{\Gamma_{S}}{\Gamma_{L}} \quad 13 | 10^{-3} \quad 6 \quad 10^{-3}$$

$$= \frac{\operatorname{BR}(K_{S} \to \pi e \nu) \tau_{L}}{\operatorname{BR}(K_{L} \to \pi e \nu) \tau_{S}} \quad 10^{-3}$$

$$Re x_{+} = (-0.5 \pm 3.1 \pm 1.8) \quad 10^{-3}$$

1,8

$$K_S \rightarrow \pi ev$$
: CPT test

1) Re *x*_: CPT viol. and $\Delta S \neq \Delta Q$

 $A_s - A_L = 4 (Re x_- + Re \delta)$

$$A_L$$
 KTeV
 $\sigma = 0.75 \times 10^{-4}$

 Re δ
 CPLEAR
 $\sigma = 3.4 \times 10^{-4}$

Re
$$x_{-} = (-0.8 \pm 2.5) \ 10^{-3}$$

Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, $\sigma = 1.3 \times 10^{-2}$)

2) Re y: CPT viol. and $\Delta S = \Delta Q$

 $A_{\rm S} + A_{\rm L} = 4$ (Re ε – Re y)

Re
$$\varepsilon$$
 from PDG not assuming CPT

Re
$$y = (0.4 \pm 2.5) \ 10^{-3}$$

Comparable with best result (CPLEAR from unitarity, $\sigma = 3.1 \times 10^{-3}$)

CPT test: the Bell-Steinberger relation

Measurements of $K_S K_L$ observables can be used for the CPT test from unitarity :

$$(1 + i \tan \phi_{SW}) [\operatorname{Re} \varepsilon - i \operatorname{Im} \delta] = \frac{1}{\Gamma_S} \sum_f A^*(K_S \to f) A(K_L \to f) = \sum_f \alpha_f$$

Semileptonic decays:

 $\alpha_{kl3} = 2\tau_S / \tau_L B(K_L l3) [\text{Re } \varepsilon - \text{Re } y - i(\text{Im } \delta + \text{Im } x_+)]$ = $2\tau_S / \tau_L B(K_L l3) [(\mathbf{A}_S + \mathbf{A}_L) / 4 - i(\text{Im } \delta + \text{Im } x_+)]$ <u> $\pi\pi decays:$ </u> <u> $\pi\pi\pi decays:</u>$ </u>

 $\alpha_{+-} = \eta_{+-} B(K_{S} \to \pi^{+} \pi^{-})$ $\alpha_{+-0} = \tau_{S} / \tau_{L} \eta_{+-0}^{*} B(K_{L} \to \pi^{+} \pi^{-} \pi^{0})$ $\alpha_{000} = \eta_{00} B(K_{S} \to \pi^{0} \pi^{0})$ $\alpha_{000} = \tau_{S} / \tau_{L} \eta_{000}^{*} B(K_{L} \to \pi^{0} \pi^{0} \pi^{0})$ $\alpha_{+-\gamma} = \eta_{+-} B(K_{S} \to \pi^{+} \pi^{-} \gamma)$

Kazimierz, August 24, 2006

CPT test: inputs to B-S

$$\begin{split} & B(K_{S} \rightarrow \pi^{+}\pi^{-})/B(K_{S} \rightarrow \pi^{0}\pi^{0}) = 2.2549 \pm 0.0054 \\ & B(K_{S} \rightarrow \pi^{+}\pi^{-}\gamma) < 9 \times 10^{-5} \\ & B(K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (3.2 \pm 1.2) \times 10^{-7} \\ & B(K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \times 10^{-7} \end{split}$$

$$\begin{split} & B(K_L \rightarrow \pi l \nu) = 0.6705 \pm 0.0022 \\ & B(K_L \rightarrow \pi^+ \pi^- \pi^0) = 0.1263 \pm 0.0012 \\ & B(K_L \rightarrow \pi^+ \pi^-) = (1.963 \pm 0.021) \times 10^{-3} \\ & B(K_L \rightarrow \pi^+ \pi^- \gamma) = (29 \pm 1) \times 10^{-6} \\ & B(K_L \rightarrow \pi^0 \pi^0) = (8.65 \pm 0.10) \times 10^{-4} \end{split}$$

 $\tau_{s} = 0.08958 \pm 0.00006 \text{ ns}$ $\tau_{L} = 50.84 \pm 0.23 \text{ ns}$

 $A_L = (3.32 \pm 0.06) \times 10^{-3}$ $A_S = (1.5 \pm 10.0) \times 10^{-3}$

 $\phi^{SW} = (0.759 \pm 0.001)$ $\phi^{+-} = 0.757 \pm 0.012$ $\phi^{00} = 0.763 \pm 0.014$ $\phi^{000} = \phi^{+-0} = \phi^{+-\gamma} = [0, 2\pi]$

Im $x_{+}=(1.2 \pm 2.2)\times 10^{-2}$ by CPLEAR A combined fit of CPLEAR data with KLOE-KTeV ($A_{s}-A_{L}$) gives a ×3 improvement:

Im $x_{+} = (0.8 \pm 0.7) \times 10^{-2}$

CPT test from unitarity: results

Re $\varepsilon = (160.2 \pm 1.3) \times 10^{-5}$ Im $\delta = (1.2 \pm 1.9) \times 10^{-5}$

- Uncertainty on Im δ is now dominated by ϕ_{+-} and ϕ_{00} - Semileptonic sector contributes by ~ 10% Old: Re $\varepsilon = (164.9 \pm 2.5) \ 10^{-5}$ Im $\delta = (2.4 \pm 5.0) \ 10^{-5}$

From Im δ and Re δ it is possible to extract limits on $\Delta m = (m_{K0} - m_{K0})$ and $\Delta \Gamma = (\Gamma_{K0} - \Gamma_{K0})$

Kazimierz, August 24, 2006

Unitarity test of CKM matrix: V_{us} , V_{us} / V_{ud}

• Unitarity test from 1st row:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$

Precision test @ 10⁻³ level: from super-allowed nuclear β -decays: $2|V_{ud}|\delta V_{ud} = 0.0005$ from semileptonic kaon decays: $2|V_{us}|\delta V_{us} = 0.0009$

• $|V_{us}|$ extraction from K_{l3} decays

 $\Gamma(K \to \pi l \nu(\gamma)) \propto |V_{us} f_{+}(0)|^2 I(\lambda_t) S_{EW}(1 + \delta_{EM} + \delta_{SU(2)})$

theory uncertainty: 0.8% on $f_+(0)$

• $|\mathbf{V}_{us}|/|\mathbf{V}_{ud}|$ extraction from $\Gamma(K^{\pm} \rightarrow \mu\nu(\gamma))/\Gamma(\pi^{\pm} \rightarrow \mu\nu(\gamma))$

 $\frac{\Gamma(K \to \mu \nu(\gamma)}{\Gamma(\pi \to \mu \nu(\gamma))} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{1 + \alpha C_K}{1 + \alpha C_\pi} \quad theorem$

theory uncertainty: 1.3% on $f_{\rm K}/f_{\pi}$

KLOE has measured all experimental inputs: BR, τ , λ

τ_L from $K_L \rightarrow \pi^0 \pi^0 \pi^0$

- K_L momentum known from tag
- Uniform reconstruction efficiency with respect to L_K

$$\tau_L = 50.92 \pm 0.17_{stat} \pm 0.25_{syst}$$
 ns

$$\sigma_{rel} \sim 5.9 \times 10^{-3}$$

Average with result from K_L BR's:

$$\tau_L = 50.84 \pm 0.23$$
 ns
 $\sigma_{rel} \sim 4.5 \times 10^{-3}$

Kazimierz, August 24, 2006

20

$\lambda'_{+} = (m/m_V)^2 \quad \lambda''_{+} = 2(m/m_V)^4$ KTeV **Quadratic:** KLOE KTeV $M_V \text{KLOE}$ Pole o **NA48** NA48 **Pole model:**

 $\lambda'_{+} = (25.5 \pm 1.5 \pm 1.0) \times 10^{-3}$

 $\lambda''_{+} = (1.4 \pm 0.7 \pm 0.4) \times 10^{-3}$

 $\rho(\lambda'_{+}, \lambda''_{+}) = -0.95$

 $m_V = (870 \pm 7) \text{ MeV}$

30

PLB 636 (2006) 166 K_{Le3} form factor slopes

Measurement of the dependence of semileptonic *ff* from momentum transfer, t

K₃ only

• Fit to *t*-spectrum

 $\lambda_{+}'' \times 10^{-3}$

0

22

24

26

28

3

2

1

0

$BR(K^{\pm} \rightarrow \pi^0 I^{\pm} v)$

• $K^+ \rightarrow \pi^0 l^+ \nu$ decays are tagged by $K^- \rightarrow \mu^- \nu$ and $K^- \rightarrow \pi^- \pi^0$

• $K^{\pm} \rightarrow \pi^{0} e^{\pm} \nu$ and $K^{\pm} \rightarrow \pi^{0} \mu^{\pm} \nu$ are separated by fitting the lepton mass spectrum, obtained from **TOF**: $t^{\text{decay}}_{K} = t_{lept} - L_{lept} / \beta(m_{lept}) \mathbf{c} = t_{\gamma} - L_{\gamma} / \mathbf{c}$

Preliminary results :

$$BR(K_{e3}^{\pm}) = (5.047 \pm 0.019_{stat} \pm 0.039_{syst}) \times 10^{-2}$$
$$BR(K_{\mu3}^{\pm}) = (3.310 \pm 0.016_{stat} \pm 0.045_{syst}) \times 10^{-2}$$

$V_{us} f_{+}(0)$ from KLOE

Improving the sensitivity of the CKM unitarity test :

- new results on charged kaons from KLOE
- better estimates of $f_K\!/f_\pi\,$ and $f_+(0)$ from lattice
- better estimates of SU(2) and rad corrections to V_{ud} from nuclear β decay (now at 1-2%) (0.047% change of V_{ud} or 0.88% change of $V_{us} \Rightarrow 1\sigma$ change of $\Delta = 1 - V_{us}^2 - V_{ud}^2$)
- KLOE 2.5 fb⁻¹ data sample should definitively clarify the *ff* picture, improve BR's and lifetimes

PLB 632 (2006) 76 $\mathsf{BR}(\mathsf{K}^+ \rightarrow \mu^+ \nu(\gamma))$

Tag from K⁻ $\rightarrow \mu^- \nu$ Subtraction of $\pi^+ \pi^0$, $\pi^0 l^+ \nu$ background

BR(K⁺ $\rightarrow \mu^+ \nu(\gamma)$) = 0.6366 ± 0.0009_{stat.} ± 0.0015_{syst.}

Event counting in (225,400) MeV window of

the momentum distribution in K rest frame

The $V_{us} - V_{ud}$ plane

• Using $f_{\rm K}/f_{\pi} = 1.198(3)(^{+16}_{-5})$ from MILC Coll. (2005) and KLOE BR(K⁺ $\rightarrow \mu^+ \nu$) we get $V_{\rm us}/V_{\rm ud} = 0.2294 \pm 0.0026$

Hadron Physics

 $\phi \rightarrow \pi^+ \pi^- \pi^0$ $\phi \rightarrow f_{0} \gamma \rightarrow \pi^{+} \pi^{-} \gamma$ $\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$ $\phi \rightarrow \eta \pi^0 \gamma$ $\phi \rightarrow \eta' \gamma (\eta \gamma)$ $\eta \rightarrow \gamma \gamma$ $\eta \rightarrow \pi^+ \pi^+ \pi^0$ $\eta \rightarrow \pi^0 \pi^0 \pi^0$ $\eta \rightarrow \pi^0 \gamma \gamma$ $\eta \rightarrow \pi^+ \pi^- e^+ e^ \eta \rightarrow \pi^+\pi^ \eta \rightarrow \pi^0 \pi^0$ $\eta \rightarrow \gamma \gamma \gamma$ $e^+e^- \rightarrow \pi^+\pi^- \gamma$ $e^+e^- \rightarrow e^+e^- (\mu^+\mu^-)$

Dalitz plot analysis f_0 coupling to ϕ , $\pi\pi$, KK BR($\phi \rightarrow \pi^0 \pi^0 \gamma$) to 5% Dalitz plot analysis, stat/syst improvements BR($\phi \rightarrow a_0(980) \gamma$) to 10% stat/syst improvements $\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$ to 12%, mixing angle to 5% stat/syst improvements η mass measurement n mass measurement, Dalitz plot analysis Dalitz plot analysis BR, $m_{\gamma\gamma}$ spectrum photon coupling UL on BR at 10⁻⁵ UL UL on BR at 10⁻⁵ $a_{\mu} = (0.35 \le s_{\pi} \le 0.95 \text{ GeV}^2)$ to ~ 1% $a_{\mu \parallel had}$ down to threshold $\Gamma_{\text{lept}}(\phi)$ to 1.5% and lepton universality test

PLB 561(2003) 65 PLB 634(2006) 148 PLB 537(2002) 21 **Draft in preparation** PLB 536(2002) 209 **In progress** PLB 541(2002) 45 **Draft** in preparation **Preliminary** In progress, Draft in prep. **Preliminary** In progress In progress PLB 606(2005) 276 In progress PLB 591(2004) 49 PLB 606(2005) 12 In progress PLB 608(2005) 199

$\pi^+\pi^-\gamma$ at large angle: looking for $f_0(980)$

- $e^+e^- \rightarrow \pi^+\pi^-\gamma$ events with the photon at large angle (45°< ϑ_{γ} <135°)
- Main contributions: ISR (radiative return to ρ, ω) FSR
- Search for the f₀ signal as a deviation on M(π⁺π⁻) spectrum from the expected ISR + FSR shape

676,000 events selected (2001+2002)

$f_0 \rightarrow \pi^+ \pi^-$: fit to the $M_{\pi\pi}$ spectrum

$$\frac{d\sigma}{dm} = \left(\frac{d\sigma}{dm}\right)_{ISR+FSR+\rho\pi} + bckg(\pi^{+}\pi^{-}\pi^{0} + \mu^{+}\mu^{-}\gamma) + \left(\frac{d\sigma}{dm}\right)_{Scalar} + \left(\frac{d\sigma}{dm}\right)_{int.Scalar+FSR}$$

				No-structure	[G.Isidori et al., hep-ph/0603241
			(1000) 4(5)	M _{f0} (MeV)	968 ÷ 979
Kaon-loop	[N.N.Achasov, V.N.Ivanchenko, NPB315[N.N.Achasov, V.V.Gubin, PRD 56 (1997)		(1989) 465]) 4084]	$g_{\phi f \gamma}$ (GeV ⁻¹)	1.2 ÷ 1.8
M _{f0} (MeV)		981 ÷ 985		$g_{f_{\pi+\pi-}}(GeV)$	0.9 ÷ 1.2
g_{fK+K-}^2 /4 π (GeV ²) 1.2 ÷ 3.4		1.2 ÷ 3.4		g _{fK+K-} (GeV)	1.2 ÷ 2.8
$R = g_{fK+K-}^2 / g_{f\pi+\pi-}^2$		2.0 ÷ 2.9		R= $g_{fK+K-}^2 / g_{f\pi+}^2$	_{-π-} 1.7 ÷ 4.8

- ▶ Peak at $M_{\pi\pi}$ ~980 MeV due to $\phi \rightarrow f_0(980)\gamma$, with negative interf. with FSR
- > In both models the $f_0(980)$ is strongly coupled to kaons and to the ϕ
- **>** The introduction of $\sigma(600)$ does not improve the fit

The $\pi^0 \pi^0 \gamma$ final state

450 pb⁻¹ from 2001 – 2002 data taking ~ 400k events Two main contributions to $\pi^0 \pi^0 \gamma$ final state @ M_{ϕ}:

New analysis scheme w.r.t. PLB537 (2002) 21:

- ✓ Allow for interference between $e^+e^- \rightarrow \omega \pi^0$ and $\phi \rightarrow S\gamma$
- ✓ Bi-dimensional analysis of Dalitz-plot : $M(\pi^0\pi^0)$ vs $M(\pi^0\gamma)$

23

Summary table and comparison

KL fit results:

 $\pi^0\pi^0$: $\sigma(600)$ [but with fixed values] needed to describe data, $\pi^+\pi^-$: $\sigma(600)$ is not needed

```
both channels: f<sub>0</sub>(980) strongly coupled to KK
```

NS fit results: both channels: only f₀(980) sufficient to describe data

 $\pi^0 \pi^0$ wrt $\pi^+ \pi^-$: weaker KK coupling

model	<i>f</i> ₀ (980)	param.	π ⁺ π ⁻ γ	$\pi^0\pi^0\gamma$
Kaon	m _{<i>f</i>0}	(MeV)	980 ÷ 987	976 ÷ 987
соор	g _{iKK}	(GeV)	5.0 ÷ 6.3	3.3 ÷ 5.0
	g _{fπ+π−}	(GeV)	3.0 ÷ 4.2	1.4 ÷ 2.0
	R=g ² _K	ς /g² _{fπ+π-}	2.2 ÷ 2.8	3.0 ÷ 7.3
No	m _{/0}	(MeV)	973 ÷ 981	981 ÷ 987
Structure	g _{/KK}	(GeV)	1.6 ÷ 2.3	0.1 ÷ 1.0
	g _{ħ+π−}	(GeV)	0.9 ÷ 1.1	1.3 ÷ 1.4
	R=g ²	_ζ /g² _{fπ+π} -	2.6 ÷ 4.4	0.01 ÷ 0.5
	g _{ofy}	(GeV⁻¹)	1.2 ÷ 2.0	2.5 ÷ 2.7

$\phi \rightarrow \eta' \gamma / \eta \gamma$

427 pb⁻¹ @ $\sqrt{s} = M_{\phi}$ from 2001/2002 data • $\phi \rightarrow \eta' \gamma, \eta' \rightarrow \pi^{+} \pi^{-} \eta, \eta \rightarrow 3\pi^{0}$ • $\eta' \rightarrow \pi^{0} \pi^{0} \eta, \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ • $\phi \rightarrow \eta \gamma, \eta \rightarrow 3\pi^{0}$ 2 tracks + 7 photons 7 photons

BR($\phi \rightarrow \eta' \gamma$)/BR($\phi \rightarrow \eta \gamma$) : results

$R = \frac{BR(\phi \to \eta'\gamma)}{BR(\phi \to \eta\gamma)} = \frac{N(\eta'\gamma) \varepsilon_{\eta\gamma} BR(\eta \to \pi^0 \pi^0 \pi^0)}{N(\eta\gamma) [BR_{crg}\varepsilon_{crg} + BR_{ntr}\varepsilon_{ntr}]} ($	$ \begin{array}{c} \mathbf{K}_{\rho} \\ \mathbf{\phi}_{\rho} \\ \rho \end{array} $	erf. → η/η΄γ → η/η΄γ
$\begin{vmatrix} BR_{crg} = BR(\eta' \to \pi^{+}\pi^{-}\eta) BR(\eta \to \pi^{0}\pi^{0}\pi^{0}) \\ BR_{-} = BR(\eta' \to \pi^{0}\pi^{0}n) BR(\eta \to \pi^{+}\pi^{-}\pi^{0}) \end{vmatrix} $ from PDG	Source	Syst. Err.
	Filfo-Evcl	1%
$R = (4.74 \pm 0.09 + \pm 0.20 +) \times 10^{-3}$	TRK	1%
$R(\phi \rightarrow n'\nu) = (6.17 + 0.12 + 0.28) \times 10^{-5}$	VTX	1%
$DI(\psi /)) (0.17 - 0.12 - 0.20) \times 10$	Bkg	0.1%
Systematics dominated by the knowledge of η, η' BR's	εη /εη΄	0.4%

In agreement with previous KLOE result, PLB541 (2002) 45:

 $R = (4.70 \pm 0.47_{stat} \pm 0.31_{sys}) \cdot 10^{-3}$ $BR(\phi \to \eta' \gamma) = (6.10 \pm 0.61 \pm 0.43) \cdot 10^{-5}$

1 (2002) 45: Q_{06}^{-5} χ2

K_ρ

BR's

Total

C. Bloise

1.5%

3%

1%

4%

η/η' mixing and η' gluon content

The η/η' mixing angle in the quark flavour basis, ϕ_P , can be extracted from the ratio R using the formula [Bramon et al., Eur. Phys. J. C7 (1999) 271]

$$R = \frac{BR(\phi \to \eta'\gamma)}{BR(\phi \to \eta\gamma)} = \cot^2 \varphi_P \left(1 - \frac{m_s}{\overline{m}} \cdot \frac{Z_{NS}}{Z_s} \cdot \frac{\tan \varphi_V}{\sin 2\varphi_P}\right)^2 \cdot \left(\frac{p_{\eta'}}{p_{\eta}}\right)^3$$

$$\varphi_P = (41.5 \pm 0.3_{stat} \pm 0.7_{syst} \pm 0.6_{th})^\circ$$

Combined analysis to evaluate a possible gluon content of η'
 $\eta' = X - \frac{1}{\sqrt{2}} |u\overline{u} + d\overline{d} > +Y| s\overline{s} > +Z |glue >$

 $Z^2 > 0 \Leftrightarrow X^2 + Y^2 < 1$

 $\sqrt{2}$

 $X^2 + Y^2 = 0.93 \pm 0.06$

C. Bloise

Kazimierz, August 24, 2006

Conclusions

KLOE has obtained new results, mostly based on a sample of 450 pb⁻¹, including

- Measurements of the $K_{S}\text{-}K_{L}$ and K^{\pm} decay channels with precision $\sim 1\%$ or better
- Best limit on $K_S \rightarrow \pi^0 \pi^0 \pi^0$
- First measurement of K_S semileptonic charge asymmetry
- Evidence for $\phi \rightarrow f_0 \gamma$ from $M_{\pi\pi}$ and f-b asymmetry in the channel $\pi^+\pi^-\gamma$ (talk by S.Mueller on σ_{had})
- η/η' mixing with $\eta' \rightarrow \pi^+\pi^- 7\gamma$
- Dalitz plot analysis of $\eta \rightarrow \pi^+\pi^- \pi^0$
- η mass

With the analyses of the 2.5 fb⁻¹ data sample we can address/improve:

- QM interference studies
- BR(K_S $\rightarrow \gamma\gamma$), BR(K_S $\rightarrow \pi^+\pi^-\pi^0$), BR(K_S $\rightarrow \pi^+\pi^-e^+e^-$)
- UL(K_S $\rightarrow \pi^0 \pi^0 \pi^0$), UL(K_S $\rightarrow e^+e^-$)
- Semileptonic BR's, lifetimes, *ff* slopes
- **BR**(K_L $\rightarrow \pi\pi$) to few 10⁻³
- $\Gamma(K^{\pm} \rightarrow e^{\pm}\nu)/\Gamma(K^{\pm} \rightarrow \mu^{\pm}\nu)$ to few 10⁻²
- Combined fit of both, charged and neutral, $\pi\pi\gamma$ final states and searches for $f_0/a_0 \rightarrow KK$
- Search for $\sigma(600)$ with off-peak data using the reaction $\gamma\gamma \rightarrow \pi^0\pi^0$ (talk by F. Nguyen)
- $\eta \to \pi^+\pi^-e^+e^-$, $\eta \to \pi^0\gamma\gamma$, $\eta \to \pi^+\pi^-\gamma$, $\mu^+\mu^-\gamma$, η' decays