

M. Moulson, 24 September 2002 Working meeting

Outline:

- 2001 data BVLAB scan
- ACCELE/MBCKADD selectors
- Logistical issues for MC production

All 2001 Bhabha files scanned with BVLAB module

For each run (file):

- number of hits in $\gamma\gamma$ events
- number of (un)associated hits in VLAB events
- quantities related to LAB/VLAB topology
- \sqrt{s} distribution for VLAB events

New \sqrt{s} scan!

• Antonelli/Dreucci fit

New fits for \sqrt{s}

- New reference distribution State of the art MC/reconstruction
- 300,000 VLAB events 10x improvement in statistics
- Uncalibrated √s values shift +0.68 MeV!

	Old	New
Generated \sqrt{s}	1019.92	1019.4
Est. energy loss, e^{\pm} naïve B-B	-1.6(?)	
Est. effect of rad. tail	-0.2(??)	
Pion energy loss compensation	+1.0	
Expected peak after recon.	1019.1	1018.6
Peak \sqrt{s} after recon.	1020.3	1019.1
Peak \sqrt{s} found – expected, MC	+1.2	+0.5
$m_{\phi}(\text{scan}) - m_{\phi}(\text{CMD-2})$	-0.15	+0.55

Momentum scale discrepancy in MC/data worse than previously thought? New fit more consistent:

- New fit: VLAB, $\theta > 55^{\circ}$, both signal and reference histograms
- Old fit: HMAKE, $\theta > 23^{\circ}$ but reference histogram $\theta > 51^{\circ}$

Background tools

Tools for inserting background:

- ACCELE: EmC clusters
- MBCKADD: DC hits

Both feature selection and insertion phases (modules)

MBCKADD

- Selects $\gamma\gamma$, Bhabha, $\eta\gamma \rightarrow 3\gamma$ events
- Removes correlated hits
- Can run on L3BHA stream
- Output file size: 200 bytes/evt
- 1 M evts needed for analysis (200 MB)
- Multiple insertions possible

Review of ACCELE module and selection criteria?

Objectives:

- Unified output file format: compressed YBOS
- Unify event selectors for logistical simplicity At least in same executable
- Single output file
- Insert background for both EmC and DC simultaneously
- Complete simulation of background in physical event Interplay of hit-blocking, t0 corruption, etc.

- How compatible are selection criteria with those of MBCKADD?
- Can MBCKADD and ACCELE selection modules be combined?
- Can we write a single output file?
- How do we deal with events selected by one module and not the other?
- Can MBCKADD and ACCELE insertion modules be combined?

Is detector geometry same for MC/data reconstruction? If no: do we reconstruct with MC or data geometry?

Quality control:

- Does background scan of merged events yield same results as original background scan?
- Is track quality (χ², mean number of hits) same as in data?

Sampling techniques:

• Global:

Inserted events from all runs

Make sure all used roughly same number of times

Mirrors data exactly if standard data set defined

• Local:

Inserted events from run group with given background conditions Final sample obtained by combining run groups on basis of *L* Less exact, but a little more flexible if standard run groups defined

Database issues:

- Modifications to database to track source of inserted events
- New fields in appropriate table to contain background parameters for data

Generation/reconstruction policy:

- Always do first reconstruction with no background
- Successive reconstructions can be made on reconstructed file without background by dropping appropriate banks
- Implies keeping first reconstruction on tape

Once background has been introduced, re-introduction of new background level impossible

Do we have sufficient offline resources?

Other logistical issues?