

M. Antonelli	ISR and ϕ decay simulation
M. Moulson	Bank-reduction code for DST's
M. Palutan <i>et al</i> .	Trigger simulation parameters
S. Giovannella	GEANFI on IBM

S. Dell'Agnello et al.	DC geometry review	
S. Miscetti	EmC response validation	
S. Miscetti	Event selection for background insertion Background insertion for EmC	
M. Moulson	Background insertion for DC DC dead/hot simulation	
P. de Simone	DC s-t relations with new sag model	
C. Bloise	Other MC tuning	
I. Sfiligoi	DB modifications for DST's	
All	Production model	


For DC insertion/simulation code:

A/C module to suppress hits on hot/dead channelsAdjustment for different *s-t* relations in MC/data Form of solution (if any) to be determinedMake pristine copy of DTHA bank to allow reprocessing without background?

For INSERT module:

Install KID routines for reading background file

Background can be treated as a datarec stream

New DB requirements for MC runs/files:

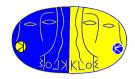
Runs are generated for each raw file in data set Additional complications from grouping raw files/splitting MC files

New DB2 tables in logger schema for official MC production Link MC runs with background files used for reconstruction New tables only supplement existing tables

→ Fully backward compatible

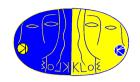
Note:

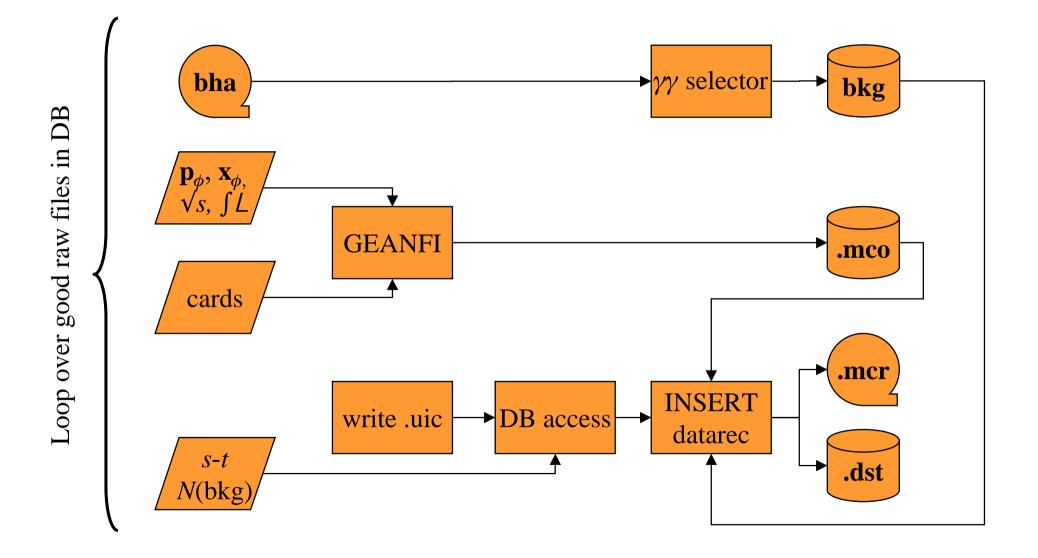
MC run number will not correspond to simulated physical run number Correspondence will be available from database



Example of new table to extend information in logger.mc_runs:

logger.mc_runs	logger.mc_runs_raws	
One entry per MC run	One entry per MC run and background file	
MCCard_ID,	MCCard_ID,	Primary keys identifying MC run
MCRun_Nr	MCRun_Nr	
	Bkg_Run_Nr,	Primary keys of associated
	Bkg_Version,	background, can be used to index:
	Bkg_Offline_ID,	 logger.datarec_logger
	Bkg_Datarec_Nr,	 logger.datarec_raws
	Bkg_Stream_ID,	→ logger.raw_logger
	Bkg_GB_Nr	


Create views e.g., to allow MC files to be selected by physical run number


Combine or separate neutral kaon runs?



Combined production $K_S \rightarrow \text{all}, K_L \rightarrow \text{all}$	Separate production $K_S \Rightarrow \pi^0 \pi^0, K_L \Rightarrow \text{all}$ $K_S \Rightarrow \pi^+ \pi^-, K_L \Rightarrow \text{all}$ Differentiated by K_I decay in DC?	Combined generation $K_S \rightarrow \text{all}, K_L \rightarrow \text{all}$ Streaming to dst by MC truth
Simpler to produce	Simpler to analyze	Simple to produce and analyze (if no reprocessing)
Fewer files (if file length unsaturated)	Smaller files	Smaller files
Less disk turnover? (if people cooperate)	Less disk turnover? (if event subset dominates interest)	Less disk turnover? (if event subset dominates interest)
	Lighter disk access (if event subset dominates interest)	Lighter disk access (if event subset dominates interest)
No need to prioritize	Possible to prioritize	No need to prioritize
Naturally treats rare channels		Rare channels treated well in generation Problems with zero-length files
Well-suited for background studies (rare K_S decays, non- $K_S K_L$ physics)		Acceptable compromise for background studies (mechanically more running, total volume and content of data set unchanged)

Complete production flowchart

Original proposal: 500 pb⁻¹ of $K_S \rightarrow all, K_L \rightarrow all$ (about 500M events)

Revised proposal:

100 pb⁻¹ of $\phi \rightarrow$ all (about 300M events) 400 pb⁻¹ of $K_S \rightarrow$ all, $K_L \rightarrow$ all (about 400M events)

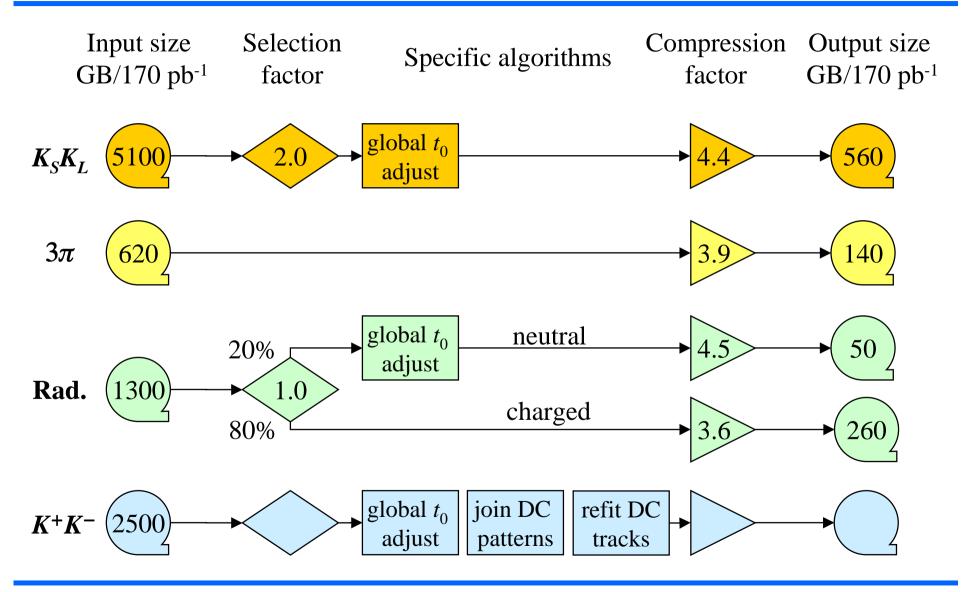
Issues to discuss:

- Temporal profile of MC event subsets
- Separation of DST generation stage
- Streams to create
 - How many streams, divided on what basis?
 - Where to incorporate in production chain?
- **kpm** retracking

MC output should be as similar to data as possible (except in that all events are kept, even those which don't classify)

Users of particular stream want data reconstructed as they would be in their stream


Implies creation of MC DST's conforming to **datarec** streams, each containing <u>all</u> generated events.


Could avoid this by ignoring t_0 corrections, neutral vertex, etc. and requiring user to apply these at front-end of analysis stage

kpm stream involves special problems due to intensive retracking

Two **datarec**-like DST streams for $\phi \rightarrow$ all events

Data-summary tapes

