Tuning of trigger simulation parameters (Bossi, Moulson, Palutan, Sciascia)

• Calorimeter trigger thresholds calibration using prompt photons from  $K_S \rightarrow \pi^0 \pi^0$  events (2001 and 2002 data).

• Drift chamber trigger threshold calibration using  $K_S \rightarrow \pi^+ \pi^-$  and  $K^+ K^-$  events (2001 and 2002 data).

# Calorimeter trigger

• An effective threshold is evaluated comparing the energy of a photon cluster (from  $K_s \rightarrow \pi^0 \pi^0$  events) with the trigger sector response. An unbiasing condition is imposed to the remaining clusters of the event (two sectors fired).

• During 2001 and 2002 data taking periods, a dishmap with unbalanced endcap thresholds has been used. A single step has been applied to the hardware thresholds of some endcap sectors at the beginning of 2002 data taking, to recover 2001 running condition.

- Data samples used for calibration (neutral kaons DST's):
- 2001 run 20800-21800 = 37 pb-1
- 2002-ini run 23600-23980 = 26 pb-1

new hardware map starting from run 24036

2002-mid run 24700-25000 = 17 pb-1 2002-end run 26090-26500 = 45 pb-1 Barrel thresholds in the standard trigger simulation



#### 2002-mid + 2002-end



#### Data/MC comparison after calibration: Barrel



#### Data/MC comparison : Endcap unbalanced

Short modules (HOT)

Beside the Beam pipe (WARM)



2002-ini

#### Data/MC comparison : Endcap COLD



2002-ini

Y (cm)

### Data/MC comparison for charged pions ( $K_S \rightarrow \pi^+ \pi^-$ )

The effective threshold is computed on clusters associated to charged pion tracks (well separated pion clusters + unbiasing procedure)



#### Data/MC relative spread: photons on barrel



#### Data/MC relative spread: photons on HOT sectors



#### Data/MC relative spread: photons on WARM sectors



Data/MC relative spread: pions on barrel



MC efficiency spread for a +/-5% overall threshold drift



MC efficiency spread for a +/-5% overall threshold drift



### Photon probability to fire the fifth plane

A better tuning is needed if the T3 filter has to be simulated...



### DC trigger: T2D effective threshold

• No hardware monitor on the superlayer response (MC tuning can be performed only on the global trigger decision )

• T2D decision is processed after 1.3µs of integration (also in the simulation)

• The ADC counts from the hardware monitor of the CAFFE board are not easily translated into a number of hits

 $\rightarrow$  the T2D response is correlated with the total number of reconstructed hits

 $\rightarrow$  it is important to take into account the charged BKG

 $(\gamma\gamma \text{ events} + \text{ insert module})$ 



### MC + different bkg samples



### data/MC comparison: 2002-end sample

A single T2D threshold value (72 hits within 1.3 µs) fits approximately both the neutral and charged kaon efficiency profiles



### data/MC comparison: 2002-ini sample

The same T2D threshold is applied to the different samples (as in the real hardware maps)



# data/MC comparison: 2001 sample

ε (T2D)



### hardware/bkg/calibration stability



### Effective Threshold vs T2D Threshold (MC)



## MC efficiency spread for $\pm 1$ hit threshold shift

|                                                                                                                                                                                                                                                                   | Th                              | Δ                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|
| <b>K+K-</b>                                                                                                                                                                                                                                                       | 75.0%                           | 2.4%                      |
| K <sub>S</sub> K <sub>L</sub>                                                                                                                                                                                                                                     | 60.6%                           | 1.3%                      |
| $\begin{array}{c} \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+}\pi^{-}  \mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{ev} \\ \mathrm{K}_{\mathrm{L}} \rightarrow \pi \mu \mathrm{v} \\ \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+}  \pi^{-}  \pi^{0} \end{array}$ | 87.9%<br>87.7 <i>%</i><br>87.0% | $0.7\% \\ 0.7\% \\ 0.7\%$ |
| $\pi^-\pi^+\pi^0$                                                                                                                                                                                                                                                 | 62.5%                           | 3.2%                      |