Measurement of the beam energy spread

T. Spadaro Laboratori Nazionali di Frascati

C. Gatti

University of Roma "La Sapienza"

Meeting of MC working group, Frascati 7.3.2003

Motivations

 \succ Necessary ingredient for the determination of Γ_{Φ} from the line shape fits

 \succ Dominant contribution to the resolution on K_L momentum estimated from K_L tag

To be plugged into the future MC production

Does it vary along the data set? In particular, does it vary with the nominal value of the sqrt(s)?

Old method (1)

> K_s → $\pi^+\pi^-$ + Kcrash: two independent estimates of the sqrt(s) are available in the same event:

>1) P_s from K_S, P_L using the ϕ momentum

>2) P_L from the time of the Klong cluster, P_S using the ϕ momentum resolutions on the

> In absence of correlation, one has:
>1) Sum = sqrt(s)_L + sqrt(s)_S = x + y + 2b
(c.m. energy estimates from K_S and K_L
>2) Diff = sqrt(s)_L - sqrt(s)_S = x - y
>1) Var(Sum) = $\sigma_x^2 + \sigma_y^2 + 4 \sigma_b^2$ >2) Var(Diff) = $\sigma_x^2 + \sigma_y^2$ 2 x c.m. energy spread

Old method (3)

- Result lies around 450 KeV
- Drawbacks:
 - Bad gaussian fits, due to asymmetric tails in the resolution
 - Systematical variation of the result as the fit range changes
 - ISR neglected, this affects the distributions in asymmetric way

New method (1)

ISR

➢ Including ISR:

- >1) Sum = sqrt(s)_L + sqrt(s)_S = x + y + 2b + 2s
- \geq 2) Diff = sqrt(s)_L sqrt(s)_S = x y
- From the distribution of the difference one can obtain that of the sum:

$$S(g) = \int R(x)R(y)B(b)F(s) \,\delta(g - x - y - 2b - 2s) \,dx \,dy \,db \,ds =$$

$$\int B(b)F(s) \,\delta(g - \nu - 2b - 2s) \,db \,ds \int R(x)R(y) \,\delta(\nu - x - y) \,dx \,dy \,d\nu =$$

$$\int B(q/2) \int D(\nu)F(s) \,\delta(g - \nu - 2s - q) \,d\nu \,ds \,dq$$

$$if R(y)=R(-y)$$

New method (2)

▶ 1) Convolve the Diff
 distribution with that of ISR,
 taken from Monte Carlo
 (thanks to Mario)

▶ 2) Fit the resulting
 histogram + convolution with
 a gaussian to the Sum
 distribution

➤ 3) Leave as free parameters of the fit the c.m. energy spread + a global offset

New method (3)

▶1) Likelihood takes into account fluctuations in the MC + those on the data

▶2) Directly find the maximum of the likelihood, fitting -2log(L) in each parameter to a polinomial of third degree

➤ 3) Analitically calculate the minimum and numerically the parameter interval corresponding to

$$\chi^2 = \chi^2_{\min} + 1$$

Check of the method (1)

> Same method can be applied in $K_S \rightarrow \pi^+\pi^- + K_L \rightarrow \pi^+\pi^-\pi^0$

> sqrt(s)_L from both γ 's from K_L (T₀ from K_S π clusters)

 \succ Here, sqrt(s)_L estimate has a more symmetric behavior

Check of the method (2)

> Both methods applied on the same range of runs:

Method	c.m.e. spread (MeV)	Offset (MeV)
Kcrash	0.301 ± 0.018	0.848 ± 0.018
$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.304 ± 0.018	0.766 ± 0.017

Check of the method (3)

➤ The method has been applied on Monte Carlo events with no beam spread, yielding a result compatible with 0

➤ On MC events generated using a c.m.e. spread of 575 KeV, one gets: 569±1 KeV. Systematic error of 5 KeV?

> Results does not change significantly applying on the Monte Carlo the same θ cut as on data

Check of the method (4)

Correlations between sqrt(s)S and sqrt(s)L can lead to a systematic error

These can be due to the usage of the same nominal value of \mathbf{P}_{ϕ} in both calculations

> Event by event the real ϕ momentum is different from the nominal one and is correlated to the beam energy fluctuations, either due to beam spread or to ISR

Sum variation with an error $\delta \mathbf{P}_{\phi}$ on \mathbf{P}_{ϕ} : $\propto -\mathbf{P}_{\phi}$. $\delta \mathbf{P}_{\phi}/\mathbf{E}_{S}$

► Diff variation with an error $\delta \mathbf{P}_{\phi}$ on \mathbf{P}_{ϕ} : $\propto (2\mathbf{P}_{S} - \mathbf{P}_{\phi}) \cdot \delta \mathbf{P}_{\phi}/\mathbf{E}_{S}$

Check of the method (5)

Meeting of MC working group, Frascati 7.3.2003

Conclusions

- New method guarantees:
 - better control of the systematics
 - independence from the fit range
 - freedom from particular assumptions on the shape of resolutions

• Procedure almost ready to run over the whole data set, need to make the procedure fully automatic (1 pb⁻¹ 30 KeV error)

• Have to check the dependence on an error on the ϕ momentum directly on data

