

# Status of K<sup>00</sup>e4 analysis

Sabino Meola

**Kloe General Meeting** 

10-11 December '07 1

### Outline



- Motivations.
- Measurement strategy.
- Background analysis and rejection.
- Conclusions.

### The K<sup>±</sup> $\rightarrow \pi^0 \pi^0 e^{\pm} v_e$ (K<sup>00</sup>e4) decay



- Allows the study of  $\pi$ - $\pi$  scattering
- Selection rule  $\Delta I = \frac{1}{2}$
- Form factor F

Signal PDG value: (2.2±0.4)·10<sup>-5</sup>K<sup>00</sup>π3PDG value: (1.757±0.024)·10<sup>-2</sup>Ke3PDG value: (4.98±0.07)·10<sup>-2</sup>

$$\Gamma(K^{00}e4) = 0.8 \cdot |V_{us}|^2 \cdot |F|^2 \cdot 10^3 s^{-1}$$



Sabino Meola

#### **Kloe General Meeting**

### Aim is to measure a relative BR



Aim is to measure a relative branching ratio normalized to  $K^{00}\pi$ 3 events without using Tag algorithm

$$\frac{BR(K^{\pm} \to \pi^{0} \pi^{0} e^{\pm} v_{e})}{BR(K^{\pm} \to \pi^{0} \pi^{0} \pi^{\pm})} = \frac{N_{K^{00} e4}^{Obs}}{N_{K^{00} \pi 3}^{Obs}} \cdot \frac{\mathcal{E}_{K^{00} \pi 3}}{\mathcal{E}_{K^{00} e4}}$$

The normalization to  $K^{00}\pi$ 3 events guarantees a cancellation of the systematic effects.

### **Measurement Strategy**



### The measurement strategy is articulated in the following steps:

- Searching for a  $\mathsf{K}^{\pm}$  track starting from  $\Phi \to \mathsf{K}^{\scriptscriptstyle +}\mathsf{K}^{\scriptscriptstyle -}$  stream information.
- Neutral vertex with 2  $\pi^0$ .
- $\pi^0$  reconstruction.
- Kinematic fits.
- $\pi$ -e discrimination by t.o.f. measurement.
- Background rejection by using Likelihood ratio method.

### **Step 1: Looking for K<sup>±</sup>**



- We ask for the event to be in the  $\Phi \to K^{+}K^{-}$  stream.
- We ask for a vertex in the fiducial volume.

We have ~97.5% of true charged kaon track.

### **Step 1: Looking for K<sup>±</sup>**





Sabino Meola

#### **Kloe General Meeting**

### **Step 2: Neutral vertex**



Allow the selection of events with 2  $\pi^0$  in the final state

 $K^{\pm} \rightarrow \pi^0 \pi^0 X^{\pm}$ 

The neutral vertex must satisfy the following requests:

- 4 neutral clusters on time (t - r/c)<sub> $\gamma_1$ </sub> = (t - r/c)<sub> $\gamma_2$ </sub> = (t - r/c)<sub> $\gamma_3$ </sub> = (t - r/c)<sub> $\gamma_4$ </sub>
- consistecy between charged and neutral vertex



### **Step 3:** $\pi^{\circ}$ **reconstruction**



- Cut on  $\chi^2$  of the association  $\gamma\gamma \rightarrow \pi^0$
- Cut on  $\Delta \chi^2 = |\chi^2_{\text{best}} \chi^2_{\text{near}}|$

We have ~99.6% of true charged kaon track. The purity (events with 2  $\pi^0$ ) is ~ 90%.

> Signal: 2207 K<sup>00</sup>π3: 1218600 Ke3: 48606 S/B ratio: 0.0017

### **Step 4: Kinematic fits**



We run two kinematic fits:

### K<sup>00</sup>π3 hypothesis

- 4-momentum conservation
- $\pi^0$  invariant mass
- clusters on time

K<sup>00</sup>e4 hypothesis

- missing 4-momentum having zero mass
- $\pi^0$  invariant mass
- clusters on time

### **Step 4: Kinematic fits**



We look at the  $\chi^2_B - \chi^2_S$  distribution.



### **Step 5: TCA association**



#### Allows to do $\pi$ –e discrimination by t.o.f. measurement



### **Step 5: TCA association**

Poly KLOB

The unknown population is constituted by pions wrongly associated to photon's cluster.

$$\beta = \frac{L_{trk}}{\left(t_{cl}^{\text{sec}} - t_{vtxneu}\right) \cdot c}$$

$$m^2 = p^2 \cdot \left(\frac{1 - \beta^2}{\beta^2}\right)$$



### **Contributions to background**



The main contribution to background is due to:

- $K^{00}\pi3$  events with a photon's clusters wrongly associated to secondary track.
- Ke3 radiative events with one split neutral cluster.

### **Contributions to background**



Kinematic variables used to reject  $K^{00}\pi 3$  events



Sabino Meola

Kloe General Meeting

10-11 December '07 15

### **Contributions to background**



Kinematic variables used to reject **Ke3** events





3-momentum constrained by a kinematic fit



Sabino Meola

Kloe General Meeting

## **Background rejection**



We use the Likelihood ratio method, based on the Neyman-Pearson Lemma, to reject background in order to obtain the maximum purity for a <u>given efficiency</u>.

To reject  $K^{00}\pi 3$  background we consider:

 $\mathbf{R}_{1} = \mathbf{P}(S)/\mathbf{P}(K^{00}\pi 3) = \mathbf{P}_{S}(P/E) \cdot \mathbf{P}_{S}(m^{2}) / \mathbf{P}_{B1}(P/E) \cdot \mathbf{P}_{B1}(m^{2})$ 

To reject **Ke3** background we consider:

 $\mathbf{R}_{2} = P(S)/P(Ke3) = P_{S}(E_{m}^{2} - P_{m}^{2}) \cdot P_{S}(\theta) / P_{B2}(E_{m}^{2} - P_{m}^{2}) \cdot P_{B2}(\theta)$ 

## **Background rejection**

The cut on R<sub>1</sub> and R<sub>2</sub> has been chosen by maximizing  $\frac{S}{\sqrt{S+B}}$ 



This procedure allows to obtain the best background rejection (maximum purity) with the minimal statistic errors after background subtraction.

Signal: 390 K<sup>00</sup>π3: 437 Ke3: 245 S/B ratio: 0.57

### **Background rejection**



10<sup>2</sup>

10



Sabino Meola

Kloe General Meeting

### **Background subtraction**



We keep under control the **K<sup>00</sup>π3** contribution to background directly on data.

We have to find a way to do the same with **Ke3** events.

We are investigating, searching for a quantity to fit the background shapes.

### **Background subtraction**



$$\frac{BR(K^{\pm} \to \pi^{0} \pi^{0} e^{\pm} V_{e})}{BR(K^{\pm} \to \pi^{0} \pi^{0} \pi^{\pm})} = \frac{N_{K^{00} e4}^{Obs}}{N_{K^{00}_{\pi3}}^{Obs}} \cdot \frac{\mathcal{E}_{K^{00}_{\pi3}}}{\mathcal{E}_{K^{00} e4}} \cong 1.32 \cdot 10^{-3}$$

$$N_{K^{00}e4}^{Obs} = N^{Obs} - N_{B}^{K_{\pi3}^{00}} - N_{B}^{Ke3} = 1067 - 336 - 245 =$$
  
= 486 ± 40  
$$BR(K^{\pm} \to \pi^{0}\pi^{0}e^{\pm}v_{e}) = 1.32 \cdot 10^{-3} \times 1.763 \cdot 10^{-2}$$

 $= 2.3 \pm 0.2 \cdot 10^{-5}$  Relative error ~ 8%

### **Reconstruction Efficiency**



The global reconstruction efficiency can be defined as:

$$\varepsilon_G = \frac{N_{Sel\&Vtx}}{N_{Sel}}$$

using the neutral vertex as normalization sample

Allow the selection of events with 2  $\pi^{\scriptscriptstyle 0}$  in the final state

 $K^{\pm} \rightarrow \pi^0 \pi^0 X^{\pm}$ 

The neutral vertex must satisfy the following requests:

• 4 neutral clusters on time (t r(c) = (t r(c)) = (t r(c)) = (t r(c))

- $(t r/c)_{\gamma_1} = (t r/c)_{\gamma_2} = (t r/c)_{\gamma_3} = (t r/c)_{\gamma_4}$
- consistecy with  $\pi^0$  invariant mass.



We vary the cut on  $R_1$  and  $R_2$  independently and in a large interval.

 $2 < R_1 < 100$ 

 $5 < R_2 < 70$ 

### To be done



# Find a way to evaluate the Ke3 contribution to background on data. Complete efficiencies studies. Complete systematics studies.

### Conclusions



- We tried successful to measure a relative BR without the Tag requirements, but we need to find a way to evaluate the Ke3 contribution on data.
- The measurement method allows to estimate the  $K^{00}\pi 3$  background contribution directly from data.
- Normalization to  $K^{00}\pi 3$  events guarantees a cancellation of the systematics effects.