KLOE General Meeting '07 10-11 December 2007, LNF

Status report onππγ Large Angle analyses

Paolo Beltrame

for the $\pi\pi\gamma$ Group

On Peak Analysis 2002 DATA

- Check on f_o models in FEVA and PHOKHARA MC generators

PHOKHARA

- Kaon loop model
- no scalar and no Double Resonance contribution
- only $f_o(980)$ amplitude

FEVA

- New Achasov's model (... with wrong parameters)
- contains σ , f_{o} , Double Resonance contribution
- parameters from Miscetti-Giovannella fit of $\phi \rightarrow f_o \gamma \rightarrow \pi^0 \pi^0 \gamma$

(according to the "wrong parameters" Achasov's model)

Choice for the $M_{\pi\pi}$ spectrum:

- central values: not corrected spectrum
- systematic error: difference from the MC models

Wrong parameter values in Achasov's model in FEVA cured

- \rightarrow cured parameters of model
- \rightarrow parametrs from $\phi \rightarrow f_o \gamma \rightarrow \pi^0 \pi^0 \gamma$ according to the fixed parameter values

 $M_{\pi\pi}^{2}$ (GeV²)

Charge asymmetry in $M_{\pi\pi}^{2}$ slices (0.3-0.4 & 0.4-0.5 GeV²)

FEVA

DATA

Old = wrong parameter values

- + parameters from $\pi^0\pi^0\gamma$ fit
- New = cured parameter values

+ parameters from $\pi^0\pi^0\gamma$ fit

PHOKHARA

DATA

NS = No structure model

KLOE = 4 quarks model with better fit

parameters from $\phi \rightarrow f_o \gamma \rightarrow \pi^+ \pi^- \gamma$ analysis

Charge asymmetry in $M_{\pi\pi}^{2}$ slices (0.5-0.6 & 0.6-0.7 GeV²)

FEVA

PHOKHARA

better agrees with DATA then version with wrong parameters

Charge asymmetry in $M_{\pi\pi}^{2}$ slices (0.7-0.8 & 0.8-0.85 GeV²)

0.5 0.5 0.4 0.4 $0.7 - 0.8 \text{ GeV}^2$ Data 0.3 0.3 EVAn χ^2 - kloe = 90.9 0.2 0.2 $\chi^2 - ns = 207.2$ 0.1 0.1 0 0 -0.1 -0.1 Black = data -0.2 -0.2 -0.3 $0.7 - 0.8 \text{ GeV}^2$ Red = MC-KLOE -0.3 -0.4 Blue = MC-NS -0.4 -0.5 -0.5 50 60 70 80 90 100 110 120 130 50 90 70 80 120 130 60 100 110 θ_{π} (°) $\theta_{\pi}(^{\circ})$ 0.6 0.6 Data 0.4 0.8 - 0.85 GeV² FEVAne 0.4 EVA oli 0.2 χ^2_2 - kloe = 73.8 χ^2 - ns = 443.6 0.2 0 0 -0.2 -0.2 Black = data 0.8 - 0.85 GeV² -0.4 Red = MC-0.4 -0.6 50 70 80 90 100 110 120 130 60 -0.6 70 80 90 100 110 120 130 θ_{π} (°) 50 60 $\theta_{\pi}(^{\circ})$

FEVA

PHOKHARA

Both PHOKHARA and cured FEVA in good agreement with DATA

Comparisons of F_{\pi}(s): LA 2002 (FEVA) and SMA 2002

- Slope in relative difference
- Hint of underestimation of f_o contribution by FEVA

- Trend in relative difference (from -20% to 3%)
- Hint of overestimation of f_o contribution by PHOKHARA

Influence of FSR-NLO on f_o(980) subtraction

- FEVA does not contain NLO correction
- PHOKHARA does

To check the impact of FSR-NLO on f_o subtraction: **PHOKHARA5.1**

$(ISR-LO + ISR-NLO + FSR-LO + FSR-NLO + f_{o})$ $(ISR-LO + ISR-NLO + FSR-LO + f_{o})$

Large effect due to NLO (up to ~20%) Systematic uncertainty to be added to the $f_o(980)$ contribution No Trackmass cut applied

- Scalars and Double Resonance contribution is the only missing part to conclude LA2002

- Using the Achasov model with fixed parameter values in FEVA the DATA-MC agreement in the charge asymmetry improves

- The $f_0(980)$ contribution with the new Achasov model is unchanged in the **mass spectrum** at low Q² and changes at high Q²
- Huge FEVA-PHOKHARA disagreement mass spectrum remains:

FEVA predicts a DECREASE, PHOKHARA an INCREASE... they are different things

- FEVA without the Double Resonance and σ in much better agreement with PHOKHARA: the difference between the two generators is due to the Double Resonance and σ contributions

- For the given systematics the $f_o(980)$ contribution can be extracted from standalone version
- Proposal: FEVA is the better generator and should be used to subtract the scalar contributions

\rightarrow Systematic error for FEVA:

- Missing NLO contribution in FEVA sizable effect, to be taken into account
- changing parameters to find the best DATA-MC agreement in $M^{}_{\pi\pi}$ in Charge Asymmetry
- moving around the best set of parameters look at $M^{}_{\pi\pi}$ variation

Off Peak Analysis 2006 DATA

- Analysis cuts
- Background subtraction procedure
- $F_{\pi}(s)$ extraction (VERY PRELIMINARY)

Analysis cuts

- $50^{\circ} < \theta_{\gamma} < 130^{\circ}$
- Trackmass: constant function (lower) and exponential function (upper)
- Ω (angle between missing momentum and photon momentum): exponential function
- .or. of (π -e) Likelihood

Background Subtraction: 1st Method (.OR.)

Fitting procedure to get precise agreement between DATA and MCs in Trackmass spectrum Developed (with different contributions) for Small Angle 2002

For Off Peak \rightarrow two different approaches (depending on the fit to estimate radiative BhaBha)

1st Method: .OR.

- M_{Trk} DATA spectrum in the .or. of Likelihood
- All the MC samples with $\ensuremath{. \texttt{or}}$. of the Likelihood
- Fit DATA and MCs $M_{_{Trk}}$ spectra in slices of $M_{_{\pi\pi}}{}^{_2}$ (0.5 GeV²)

 \Rightarrow weights for $\mu\mu\gamma$, ee γ , $\pi\pi\pi$ MCs

* eeγ can be obtained both from MC 2002 and directly from DATA with .nor. of Likelihood

... Alternative method

Using the .or. of the Likelihood in the analysis:

ee contamination is the misidentification of one of the EMC

 \Rightarrow ee (.or.) \equiv ee (.xor.)

.OR. = .AND. + .XOR.

Try to fit the .XOR. gives more evident presence of BhaBha with respect to the .OR.

2nd Method: .XOR.

1st step

- M_{Trk} DATA spectrum in the .xor. of Likelihood

- $\pi\pi\gamma,\,\mu\mu\gamma$ and $\pi\pi\pi$ MC samples with <code>.or</code>. of the Likelihood
- Fit DATA and MCs $M_{_{Trk}}$ spectra in slices of $M_{_{\pi\pi}}{}^{_2}$ (0.5 GeV²)
 - \Rightarrow weights for ee γ

 \rightarrow SUBTRACT BhaBha contribution FROM DATA spectrum (in the .or.)

2nd step

- M_{Trk} DATA(-BhaBha) spectrum in the .or. of Likelihood

- $\pi\pi\gamma$, $\mu\mu\gamma$ and $\pi\pi\pi$ MC samples with .or. of the Likelihood
- Fit DATA and MCs $M_{_{Trk}}$ spectra in slices of $M_{_{\pi\pi}}{}^{_2}(0.5~\text{GeV}{}^2)$

 \Rightarrow weights for $\mu\mu\gamma$ and $\pi\pi\pi$ MCs

* eeγ can be obtained both from MC 2002 and directly from DATA with .nor. of Likelihood

Background Subtraction: possibilities and first check

Method	Sample
OR	BhaBha from DATA
	BhaBha from MC 2002
XOR	BhaBha from DATA
	BhaBha from MC 2002

Different combinations of method and samples: comparison among them

 $0.7 < M^{-2} < 0.75 \text{ GeV}^2$ DATA (.OR.) 10³ ππγ Agreement between samples μμγ after fit and M_{trk} DATA shape $ee\gamma$ from DATA for different $M_{\pi\pi}^{2}$ slices Sum 10² 10 100 150 200 M_{trk} Data (MeV)

Background Subtraction: comparing the methods

Difference in background contribution to the spectrum, using different methods within the same sample

```
\Rightarrow using MC 2002: difference in M ^2 spectrum of ~5%
```

```
\Rightarrow using DATA (.nor.): difference in M<sup>2</sup> spectrum of ~2-3%
```

Background Subtraction: making a choice

Comparing the agreement between BhaBha after fit and DATA with .xor.

1st Method (.OR.) seems to overestimate the eeγ contribution Fitting BhaBha spectrum with .xor. gives better description of eeγ amount 2nd Method (.XOR.) and eeγ from DATA applied for the background subtraction

Preliminary extraction of F_{\pi}(s) with PoP DATA

- Analysis cuts: one vertex with two associated tracks, .or. of the Likelihood, trackmass and missing angle cuts
- Background subtraction: 2nd Method with BhaBha from DATA
- Efficiencies: FILFO (from DATA) and Global Efficiency (from $\pi\pi\gamma$ 2006 MC)
- Integrated Luminosity normalization: ~234 pb⁻¹ (DBV \ge 25)
- Radiator Function: PHOKHARA5 at 1GeV
- Vacuum polarization: from Large Angle 2002 analysis
- FSR correction: to be refined (up to O(10%)) at high

VERY PRELIMINARY

- only statistical errors
- estimate precision of ~3%

To be done:

- precise evaluation of efficiencies
- FSR correction from <code>PHOKHARA3</code> Ω
- systematics evaluation

Some comparisons among $F_{\pi}(s)$ **: PoP and SMA 2002**

Prelimanry PoP SMA 2002

 Difference flat and well below 5% up to 0.9 GeV² (efficiency still to be evaluated from DATA)

- Trend for high $M_{\pi\pi}^{2}$ region: due to efficiency, Radiator Function, FSR correction... ?

What we have done:

- Analysis cuts studied and fixed
- Main background sources: $\mu\mu\gamma$ and $ee\gamma$ (using the .or. of the Likelihood).
- Background from $\pi\pi\pi$ is not an issue
- Background fit methods studied in a detailed way and finalized, choosing the .XOR. to fit radiative BhaBha. Waiting for eeγ 2006 MC for a possible comparison with "BhaBha from DATA" method
- PrePreliminary Pion Form Factor with DATA @ 1GeV² extracted.
- Already some hints to f_o issue of Large Angle On Peak analysis

What is missing:

- Likelihood efficiency at low $M_{\pi\pi}^{\ \ 2}$ to be better understood
- Vetrex and trigger efficiencies: (easy?) using 2002 tools
- Tracking efficiency: the main efficiency to be evaluated
- FSR evaluation

Pion Form Factor @ 1 GeV

Spare slides

Background Subtraction: comparing the samples

Visible discrepancy in background contribution to the spectrum, using different samples for radiative BhaBha (**DATA** or **MC**)

 \Rightarrow especially in the .or. method: difference in M² spectrum of ~10%

Prelimanry PoP

- Visible trend in relative difference between Off Peak and On Peak spectra
- Below 3% difference on the $\rho\text{-peak}$
- Hint on f_o contribution: possible overestimation by PHOKHARA up to 15% discrepancy below 0.4 GeV²

Some comparisons among $F_{\pi}(s)$: PoP and LA 2002 (FEVA)

Prelimanry PoP

LA 2002

 Visible shift (~5%) in relative difference (not yet efficiency evaluation from DATA for Off Peak spectrum)

- Ratio constant above 0.35 $\rm GeV^2$
- Hint of underestimation of f_o contribution by FEVA