$\sigma_{\pi\pi(\gamma)}$ small angle analyses

F. Nguyen for the PPG group

- ✓ Brief reminder
- \checkmark Progress in the $\pi\pi\gamma/\mu\mu\gamma$ analysis
- Refinements of the absolute $\pi\pi\gamma$ analysis:
 vertex+unfolding
- ✓ Discussion and results

State of the art among published spectra*

* updated trigger correction and theoretical σ_{Bhabha} [Nucl. Phys. B758 (2006) 227], decrease $|F_{\pi}|^2$ of 0.7%

 slope with respect to VEPP-2M scan experiments
 momentum scale analyzed in detail (P. Beltrame@Capri)
 other effects peculiar to the Radiative Return method (radiation function, vacuum)

polarization, etc...)?

Experimental answer:

analysis of $\pi\pi\gamma/\mu\mu\gamma$

Why the ratio of $\pi\pi\gamma$ over $\mu\mu\gamma$ events?

or, in alternative, a <u>measurement</u> of the $d\sigma_{\mu\mu\gamma}/dM_{\mu\mu}$ cross section gives <u>radiator H function × vacuum polarization</u> (provided that luminosity is correct)

> Federico Nguyen 10-12-2007

How to extract F_{π} from the ratio

measurement of FSR inclusive $d\sigma_{\pi\pi\gamma}/ds'$ and ISR exclusive $d\sigma_{\mu\mu\gamma}/ds'$ gives $|F_{\pi}|^2 \cdot (1+\eta_{FSR})$ [i.e. the "bare" pion form factor].

- $|F_{\pi}|^2 \cdot (1+\eta_{FSR})$ is the quantity to be put in the a_{μ}^{had} dispersion integral $(\eta_{FSR} \text{ for pointlike pions} \sim 0.8\%)$
- corrections needed to extract $d\sigma_{\mu\mu\gamma}/ds^{+}$ are pure QED and can be reliably obtained from PHOKHARA (rel. difference with KKMC ~ 0.3%)

Selections of $\pi\pi\gamma$ and $\mu\mu\gamma$ events

- a) 1 and only 1 vertex (|z| < 7 cm) connected to 2 and only 2 tracks from IP
- b) each track with $50^{\circ} < \theta_{\text{track}} < 130^{\circ}$
- c) small angle γ ($\theta_{\pi\pi} < 15^{\circ}$)
- d) at least one track with log $L_{\pi}/L_e > 0$

2 tracks of equal mass and 1 photon

Discrimination μ/π using neural networks

Multi Layer Perceptrons is a type of Neural Network widely used, interfaced with PAW/HBOOK, also used in kaon analyses

Input quantities are processed through successive layers; at the input layer \Leftrightarrow neurons = variables of the problem, in between layers = hidden layers, where variables are free to "interact" \rightarrow output response

Training and performance of the MLP

MLP function developed with the specific aim of single track π/μ discrimination for our analysis, documentation will be written

Federico Nguyen 10-12-2007 0

100

7

200

M_{Trk}[MeV]

150

Vertex corrections for $\pi\pi\gamma$: tighter m_{trk} cuts

 $\epsilon_{VTX} = \frac{\text{\# of events with a good vtx}}{\text{\# evts with a good pair of trks}}$

both tracks should satisfy usual selection, in particular:

$$\rho_{F.H.} < 50 cm; \rho_{PCA} < 8 cm; |z_{PCA}| < 7 cm$$

with:

10-12-2007

Vertex corrections for $\pi\pi\gamma/\mu\mu\gamma$: tighter m_{trk} cuts

 $\epsilon_{VTX} = \frac{\text{\# of events with a good vtx}}{\text{\# evts with a good pair of trks}}$

both tracks should satisfy usual selection, in particular:

$$\rho_{F.H.} < 50 cm; \rho_{PCA} < 8 cm; |z_{PCA}| < 7 cm$$

with:

103 MeV<m_{TRK}<108 MeV

New: tracking corrections for $\mu\mu\gamma$ events

the whole 2002 UFO provides only with 240/20 = 12 pb⁻¹, we refiltered 50 pb⁻¹ of 2002 RAW data

• at least a "good tagging track" (first hit with $\rho_{FH} < 50$ cm, point of closest approach (PCA) of backward track extrapolation must have $\rho_{PCA} < 8$ cm and $|z_{PCA}| < 7$ cm)

• the track must have associated (new extratom) cluster with log L_{π}/L_{e} > 1 (it also provides with t0) and MLP > 0.7

 1 and only 1 cluster ("good photon") prompt (according to ECL_NEURAD) and neutral (not associated to the tagging track, nor to TCLO links) with E > 50 MeV

 \cdot photon energy χ^2 -constrained to provide a "missing track" of mass = m_μ from momenta of the photon and the tagging track

still limited statistics, more CPU/processing time is needed!

Preliminary Data/MC corrections

Checks of the procedure for pions

13

Back to the tracking efficiencies for pions

Unfolding the absolute spectrum

Effect of 1% for pions, with larger fluctuations around ω -mass + 1 nasty point at 0.8 GeV²

Application on data

Comparison between the two approaches

Federico Nguyen 10-12-2007

Comparison between the two approaches

Federico Nguyen 10-12-2007

18

Let's zoom on the comparison

✓ overall agreement ~ 1%,
✓ no relevant slope,
✓ ~ 2% agreement in the

region around the ρ

✓ checks are going on

Federico Nguyen 10-12-2007

Systematics table left unchanged

π	$\pi\gamma$	μ	иү	
FILFO	0.0%	FILFO	0.0%	
Background	QQ dep., known	Background	QQ dep., known	
Trackmass/Miss. Mass	0.2% (2001)	Trackmass/Miss. Mass	0.2% (2001)	
Likelihood+TCA	0.3%	Likelihood+TCA	0.3%	
Vertex	0.5%	Vertex	0.5%	
Tracking	0.4%	Tracking	0.5%	
Trigger	0.2%	Trigger	0.2%	
Acceptance (θ_{π})	0.0%	Acceptance (θ_{π})	0.0%	
Unshifting	??	FSR-> ISR corrections	??	
Unfolding	QQ dep.	Unfolding	0.0%	
L3 Trigger	0.1 %	L3-Trigger	0.1%	
Luminosity	0.3%	Acceptance	-0.004+0.0051*M ² ,	
Acceptance (θ_{Σ})	-0.004+0.0051* $M^2_{\pi\pi}$	$(\theta_{\Sigma}^{\mu\mu,\text{ISR}}/\theta_{\Sigma}^{\mu\nu,\text{ISR}})$	-0.0047+0.0057*M ²	
Radiator H	0.5%			
Vacuum polarization	QQ dep., known	IF₋l ² from Ratio		
$ F_{\pi} ^2$ from absolut	e Measurement	1 721	~ 25 ef have ur	

Amusing a_{μ} 's...

2001 published result (PLB606 (2005) 12): $a_{u}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (388.7 \pm 0.8_{\text{stat}} \pm 3.5_{\text{syst}} \pm 3.5_{\text{theo}}) \cdot 10^{-10}$ Applying corr. for trigger eff. and change in VLAB-xsect: $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (384.4 \pm 0.8_{\text{stat}} \pm 3.5_{\text{syst}} \pm 3.5_{\text{theo}}) \cdot 10^{-10}$ 2002 prelim. from abs. norm. (summer'07): $l_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (386.3 \pm 0.0_{\text{stat}^{\pm}} \dots _{\text{syst}^{+}})$ from ratio (summer'07): $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (375.0 \pm 1.3_{\text{stat}} \pm 4.2_{\text{syst}}) \cdot 10^{-10}$ $a_{\mu}^{\pi\pi}$ (0.35-0.95GeV²) = (386.3 ± 0.6_{stat}±4.3_{syst}) · 10⁻¹⁰ 2002 prelim. from ratio (summer'07): stable 2002 prelim. from abs. norm. (fall'07): $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (384.2 \pm 0.6_{\text{stat}} \pm 4.3_{\text{syst}}) \cdot 10^{-10}$ from ratio (fall'07): $a_{\pi\pi}(0.35-0.95\text{GeV}^2) = (276.2 \pm 4.5 \pm 1.5 \pm 1.5$ 2002 prelim. from ratio (fall'07): $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (376.8 \pm 1.5_{\text{stat}} \pm 4.2_{\text{syst}}) \cdot 10^{-10}$

small refinements in the absolute measurement, a_{μ} consistent

large work in the $\pi\pi\gamma/\mu\mu\gamma$ analysis, especially for μ tracking efficiency (MLP developed and wide momentum spectrum covered), clean data sample

overall agreement between the two spectra ~ 1% (2% around the r region), improved wrt to last summer

writing documentation in progress (first version of the Memo/Note as a X-mas gift to the referees)

Everybody is really welcome

Università Roma Tre Dipartimento di Fisica e Sezione INFN via della Vasca Navale 84 – 00146 Roma

GIOVEDI 13 DICEMBRE 2007 ore 14:15 Aula Magna Università Roma Tre Via Ostiense 159

X Roma Tre Topical Seminar on Subnuclear Physics:

SUSY today : theory and experimental limits one year before LHC

Programma:

14:15 A.Masiero:Supersymmetry, astrophysics and cosmology15:00 V.Buescher:Present collider limits to Supersymmetry15:30 G.Isidori:Supersymmetry and flavour physics

16:15 coffee break

16:45 **M.Spiropulu**: The search for Supersymmetry at LHC 17:15 **G.Altarelli**: Overview and perspectives

Small Anale analy	/sis		2001 data PL <u>B606(</u> 2005)12	2002 data arXiv:0707.4078	
eman migre anarysis		Offline Filter	0.6%	negligible	
		Background	0.3%	0.3%	
	Trackmass/Miss. Mass	0.2%	0.2%		
$d\sigma^{obs}$ 1	p/e-ID	0.1%	0.3%		
σ $(M^2) \approx M^2 \frac{d\sigma_{\pi\pi+\gamma(\gamma)}}{m\pi+\gamma(\gamma)} \frac{1}{m\pi+\gamma(\gamma)}$	Vertex	0.3%	0.5%		
$\mathcal{O}_{\pi\pi}(\mathcal{W}_{\pi\pi}) = \mathcal{M}_{\pi\pi} dM^2 = H(M^2)$		Tracking	0.3%	0.4%	
ππ ππ	Trigger	0.3%	0.2%		
	Acceptance (θ_{π})	0.3%	negligible		
$d\sigma^{obs}$ N – N	$M_{pp}^2 \rightarrow M_{g^*}$ (FSR corr.)	0.3%	0.3%		
$\frac{\pi\pi+\gamma(\gamma)}{\pi\pi+\gamma(\gamma)} = \frac{100}{100} = 100$	Luminosity	0.6%	0.3%		
dM^2 ΔM^2	Radiator H	0.5%	0.5%		
ππ ππ	Vacuum polarization	negligible	negligible		
		σ_{tot} =	1.3%	1.1%	
	KLOE 2002	systematic errors on $a_{\mu}{}^{\pi\pi}$ from the		π from the	
• · · Pre	liminary	absolute normalization analysis			
0					

3 0.9 1 M²_{ππ} (GeV²)

1

0.8

•

0.5

0.6

0.7

...

0.4

600

400

200

0

0.3

2002 analysis almost completed: a dedicated resolution unfolding procedure is under way

Federico Nguyen 10-12-2007

Analysis is in advanced state, several studies to achieve π/μ separation, both on the selection of two tracks and also at the level of single track (relevant for efficiencies and systematics estimate)

 M_{Trk} = mass under the hypothesis of 2 tracks of equal mass and 1 photon

NN output, based on the time of flight, depth and amount of the energy deposit in the calorimeter

SPARES

Federico Nguyen 10-12-2007

Present Situation: updates

Federico Nguyen 10-12-2007

27

World comparison

Improvements/updates vs 2001 data

- ■30% cosmic-rays veto inefficiency recovered by additional software trigger level
- Improved offline-event filter \rightarrow syst.error <0.1%
- Trigger efficiency updated due to a double counting, down by 0.4%
- new generator BABAYAGA@NLO: error from 0.5% to 0.1%, cross section down by 0.7%

Federico Nguyen 10-12-2007

Summary and outlook

Analysis	∫Ldt	Syst. 0.6 <m<sub>nn<0.95 GeV²</m<sub>	Syst. M _{nn} <0.6 GeV ²	
γ_{ISR} untagged 2001 data	140 pb-1	1.3 % (published)	(kinematically forbidden)	
γ_{ISR} untagged 2002 data	240 pb ⁻¹	1.1 %	(kinematically forbidden)	ππγ: paper draft μμγ: internal doc.
γ_{ISR} tagged 2002 data	240 pb-1	0.9 % $\oplus f_0(980)$ contribution	limited by model dependence of irreducible background $\phi \rightarrow f_0(980) \gamma$	internal documentation
<i>Off-Peak</i> 2006 √s = 1.00 GeV	230 pb ⁻¹	<< 1 %	suppressed $f_0(980)$ contribution	in progress