KLOE General Meeting December 10, 2007 LNF

Measurement of the Pion Form Factor at s=1.0 GeV²

Paolo Beltrame, <u>Achim Denig</u> in collaboration with Peter Lukin and Genia Solodov (BINP)

Thanks to Alexei Sibidanov for providing momenta values from the MCGPJ Monte Carlo for us!

Motivation Method: F^πP POP 2006 data allows to measure CMD-2 data $F_{\pi}(1 \text{ GeV}^2)$ by standard energy scan Approach almost background free 10 Motivation: • No existing data for $|F_{\pi}(1 \text{ GeV}^2)|^2$ • Form factor at s=1 GeV² badly needed for the Monte-Carlo prediction of the 1 GeV charge asymmetry \rightarrow test of model 10^{-1} 400 600 800 1000 1200 1400 of scalar QED for FSR 2ε. MeV

- together with scan points (2005/06) we can fit $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ and extract the BR($\phi(1020) \rightarrow \pi^+\pi^-$)
- Knowledge of pion form factor at high masses by means of an independent method is a valuable cross check of our radiative return measurements and of the radiator function

Event Selection

Selection:

- DTFS information, 2 tracks with closest DPCA
- Select collinear $\pi^+\pi^-$ events via $\Delta\theta$, $\Delta\phi$, Δp
- Large angle pion tracks $50^{\circ} < \theta < 130^{\circ}$
- Background: collinear $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ events; no other
- Can use standard $\pi\pi\gamma$ ntuples (ppgtag)
- Huge statsitics: we use sample of 8.45 pb⁻¹

MCs (within GEANFI):

- MCGPJ: Arbuzov et al. $(\pi\pi + \mu\mu)$
- Babayaga vs. 3 (μμ)
- Babayaga@NLO ($\mu\mu$)

Tracking Resolution Studies

Momentum smearing (à la Bini-Valeriani):

- Tune data MC agreement for average momentum distribution
- Cross check results in trackmass distribution, perform shift in M_{trk}

→ Method seems stable within 1% precision :-)

Pion Form Factor Extraction

Signal extraction $\pi^+\pi^-(\gamma)$ events

78257

75729

7439173846

73846

LIKELTHOOD

 $\Delta \theta$

 $\Delta \phi$

 Δp

Total

- Again count collinear di-muon events according to 3 methods as for $\mu\mu$
- All efficiencies taken from Monte-Carlo simulation
- All efficiencies taken from wome-cano simulation $(1+\delta) = \frac{N_{coll}}{N_0} \cdot \frac{\sigma_{tot}}{\sigma_{born} \cdot |F_{\pi}|^2}$

$\sigma = \frac{N_{\pi\pi}}{\mathcal{L} \cdot \varepsilon \cdot (1+\delta)},$ 8.45 pb ⁻¹ Effective Efficiency					
Selection	N4-	ε	δ]	
COLLINEARS	104218		~reject		Met
ACCEPTANCE	87569	0.840			
TRIGGER	85543	0.821	2.3%		
FILFO	84429	0.810	1.3%		
TRACKING	79842	0.766	5.4%		
PPGTAG	78287	0.751	2.0%		

0.751

0.7270.714

0.709

0.709

3.2%

1.8%

0.7%

16.7%

I. Cut p < 484 MeV/c II. M_{trk} > 120 MeV III. Fit $\pi\pi(\gamma)$ and $\mu\mu(\gamma)$ MC

Method	Ν _{ππ} (μμ bkg)	F _π ²
I.	306.498 (24.743)	3.175
II.	294.823 (4.233)	3.185
Ш.	308.793	3.176

→ Agreement within 0.3%

Systematics

Systematics studies

• Collinear cuts rather tight due to large radiative tails

 \rightarrow we have systematically varied the collinear cuts

_ means 1.5 x sigma of core gaussian of resolution functions for

Conclusion & Outlook

Conclusion

- Selection for collinear di-pion and di-muon events worked out
- Comparison of di-muon yield gives good agreement <1% with MCGPJ generator (Arbuzov et al.), but sizeable difference wrt. BABAYAGA vs. 3
- Preliminary estimate of systematics: 1% from data vs. MC for $\mu\mu$
- Pion form factor extracted according to 3 different selections: results are stable within 0.3%

 $|F_{\pi} (s = 1.0 \text{ GeV}^2)|^2 = 3.19 \pm 0.01_{stat} \pm 0.03_{syst}$

CMD-2 fit = 3.19 (same MC!?)

Outlook

- Try to use BABAYAGA@NLO for $\mu\mu$
- Measure trigger and tracking efficiency for collinear events (with POP analysis)
- Study stability over 2006 POP run
- Repeat analysis for 2005/06 scan points and fit $\pi\pi$ cross section

 \rightarrow extract BR($\phi(1020) \rightarrow \pi^+\pi^-$)

