Status and perspectives on neutral kaon analysis

KLOE General meeting LNF, December 14th, 2005

M. Palutan M. Antonelli

1) Summary of 2005 results on 2001-2002 data

2) Future:

- what is left on 2001-2002 data sample
- analysis on 2004-2005 data sample

Slides from all of the group members + S.Giovannella

2005 results on 2001-2002 data

$K_S \rightarrow \pi^0 \pi^0 \pi^0$	M. Martini, S. Miscetti	PLB 619 (2005) 61-70	
K _L lifetime	G. Lanfranchi	PLB 626 (2005) 15-23	
BR of major K _L decays	M.Antonelli, P.Beltrame, M Dreucci, M.Moulson, M.P., A.Sibidanov	Accepted by PLB	
$K_S \rightarrow \pi e \nu$	C. Gatti, T. Spadaro	KLOE memo 318 draft ready referees: C.Bini, M.Incagli	deadline for PDG06
$K_{S} \rightarrow \pi^{+}\pi^{-}(\gamma) / K_{S} \rightarrow \pi$	τ⁰π⁰ C. Gatti, M.P., T. Spadaro	KLOE memo ready draft ready referees: C.Bini, F.Bossi	Jan 15th
K _{Le3} form factor slope	es C. Gatti, M.Dreucci, M.Antonelli	KLOE memo 322 draft in writing referees: P.Franzini, V.Patera	
$K_L \rightarrow \pi^+ \pi^-$	M.Antonelli, M.Testa	KLOE memo ready blessing today referees: C.Bini,. P.Franzini	

 $K_S \rightarrow \pi e \nu$: results

Branching ratios: 410 pb⁻¹ '01 + '02 data $BR(\pi^{-}e^{+}\nu) = (3.529 \pm 0.057 \pm 0.027) \times 10^{-4}$ $BR(\pi^{+}e^{-}\nu) = (3.518 \pm 0.051 \pm 0.029) \times 10^{-4}$ $BR(\pi e\nu) = (7.048 \pm 0.076 \pm 0.050) \times 10^{-4}$

BR(πev) [KLOE '02, 17 pb⁻¹]: (6.91 ± 0.34 ± 0.15) × 10⁻⁴

Charge asymmetry:

$$A_{S} = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

With 2.5 fb⁻¹: $\delta A_s \sim 3 \times 10^{-3} \sim 2 \text{ Re } \varepsilon$

Linear FF slope:

$$\lambda_{+} = (33.8 \pm 4.1) \times 10^{-3}$$

In good agreement with linear fit from K_L semileptonic form factor [(28.6 ± 0.6) 10^{-3}]

 $K_{S} \rightarrow \pi e \nu$: test of $\Delta S = \Delta Q$ rule

$$K_S \rightarrow \pi e \nu : CPT \text{ test}$$

1) $\Re(x_{-})$: CPT viol., $\Delta S = \Delta Q$ viol.

 $A_{\rm S} - A_{\rm L} = 4 \left(\Re(x_{-}) + \Re(\delta) \right)$

 $\left[\begin{array}{ccc} A_L & \text{KTeV} & \sigma=0.75\times10^{-4} \\ \Re(\delta) & \text{CPLEAR} & \sigma=3.4\times10^{-4} \end{array}\right]$

 $\Re(x_{-}) = (-0.8 \pm 2.4 \pm 0.7) \ 10^{-3}$

Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, σ= 1.3× 10⁻²)

2) $\Re(y)$: CPT viol., $\Delta S = \Delta Q$ cons.

 $A_{S} + A_{L} = 4 \left(\Re(\varepsilon) - \Re(y) \right)$

 $\Re(\varepsilon)$ from PDG not assuming CPT

 $\Re(y) = (-0.8 \pm 2.4 \pm 0.7) \ 10^{-3}$

Comparable with best result (CPLEAR from unitarity, σ = 3.1× 10⁻³)

 $\Gamma(K_S \rightarrow \pi^+ \pi^-(\gamma)) / \Gamma(K_S \rightarrow \pi^0 \pi^0)$: result

KLOE '02	$2.236 \pm 0.003_{\text{stat}} \pm 0.007_{\text{statsyst}} \pm 0.013_{\text{syst}}$
(17 pb ⁻¹ '00 data)	
KLOE '05 (410 pb ⁻¹ '01 +'02 data)	$2.2555 \pm 0.0012_{\text{stat}} \pm 0.0021_{\text{statsyst}} \pm 0.0050_{\text{syst}}$

Fractional error on $R_{\pi\pi}$		
Source	Error (10 ⁻³)	
Event counting	0.54	
Cosmic veto	0.26	
Stat corrections	0.89	
$\pi^+\pi^-$ acceptance	1.61	
$\pi^0\pi^0$ acceptance	1.02	
Trigger	0.67	
Tag	0.63	
Background	0.10	
FILFO	0.74	
Total error	2.5	

K_{Le3} form factor slopes

Form-factor slopes for $K \rightarrow \pi l \nu$ decays needed for extraction of V_{us} (evaluation of phase-space integrals)

Parametrization:

$$t = (p_K - p_\pi)^2 / m_{\pi^+}^2$$
For K_{e3} : $f_+(t) = f_+(0) [1 + \lambda_+ t]$ or
 $f_+(0) [1 + \lambda'_+ t + 1/2 \lambda''_+ t^2]$
KLOE results for $K_I \rightarrow \pi e \nu$ decays:

- 328 pb⁻¹ of '01 + '02 data
- K_L decays tagged by $K_S \rightarrow \pi^+\pi^-$ satisfying trigger ($\epsilon \sim 30\%$)
- Two tracks in fiducial volume forming vertex
- Kinematic cuts + TOF PID to reduce background ($\sim 0.7\%$ final contamination)
- Separate measurement for each charge state (e⁺π⁻, π⁺e⁻) to check systematics

K_{Le3} form factor slopes: fit

K_{Le3} form factor slopes: result

328 pb⁻¹ '01 + '02 data , $2 \times 10^6 K_{e3}$ decays

Linear fit:

	$\lambda_{+} \times 10^{-3}$	χ^2/dof
$e^+\pi^-$	28.7 ± 0.7	156/181
π^+e^-	28.5 ± 0.6	174/181
All	28.6 ± 0.5	330/363

 $\lambda_{+} = (28.6 \pm 0.5 \pm 0.4) \times 10^{-3}$

Quadratic fit:

	$\lambda'_{+} \times 10^{-3}$	$\lambda^{\prime\prime}_{+} \times 10^{-3}$	χ^2/dof
$e^+\pi^-$	24.6 ± 2.1	1.9 ± 1.0	152/180
π^+e^-	26.4 ± 2.1	1.0 ± 1.0	173/180
All	25.5 ± 1.5	1.4 ± 0.7	325/362

 $\lambda'_{+} = (25.5 \pm 1.5 \pm 1.0) \times 10^{-3}$ $\lambda''_{+} = (1.4 \pm 0.7 \pm 0.3) \times 10^{-3}$ $\rho(\lambda'_{+}, \lambda''_{+}) = -0.95$

(*) ISTRA+ corrected

Interpretation of the results

1) KLOE measurement of $V_{us} \times f_{+}(0)$ from:

$$\begin{array}{ll} & BR(K_{Le3}), BR(K_{L\mu3}), \tau_L & \mbox{final results} \\ & \Gamma(K_{Se3})/\Gamma(K_S \rightarrow \pi^+ \pi^-), \Gamma(K_S \rightarrow \pi^+ \pi^-) / \Gamma(K_S \rightarrow \pi^0 \pi^0) & \mbox{final results} \\ & BR(K^{\pm}_{e3}), BR(K^{\pm}_{\mu3}), \tau^{\pm} & \mbox{preliminary results} \\ & \dots + V_{us}/V_{ud} \mbox{from } K^{\pm}_{\mu2} & \mbox{final result} \end{array}$$

draft in 2006 ?

2) CPT test with Bell-Steinberger relation:

all of K_{s} - K_{L} results, most relevant are: UL on BR(K_S $\rightarrow \pi^0 \pi^0 \pi^0)$ $BR(K_{L} \rightarrow \pi^{+}\pi^{-})$ semileptonic K_s charge asymmetry (A_s) draft after publ. of $K_{I} \rightarrow \pi^{+}\pi^{-}$

KLOE and V_{us}

		K _L e3	K _L μ3	K _s e3	K±e3	K±µ3
BR'S Irom	BR	0.4007	0.2698	0.00709	0.0505	0.0331
NLUE	δBR	0.0015	0.0015	0.00009	0.0004	0.0005

K_L lifetime from KLOE

$$\tau_L = (50.84 \pm 0.23)$$
 ns
Avg. of direct, Σ BR = 1
determinations

Quadratic form-factor parameterizations:

$$\begin{array}{l} \lambda'_{+} &= 0.0221 \pm 0.0011 \\ \lambda''_{+} &= 0.0023 \pm 0.0004 \\ \lambda_{0} &= 0.0154 \pm 0.0008 \end{array} \right) \left\langle \begin{array}{c} \text{KTeV} \\ \text{ISTRA+} \end{array} \right\rangle$$

KLOE λ_{+} to be impl.

V_{us}: summary of recent measurements

Thanks to F. Mescia (see hep-ph/0411097)

The V_{us}–V_{ud} plane

Inputs:

 $\dot{V}_{us} = 0.2258 \pm 0.0020$ (K₁₃ KLOE) $V_{ud} = 0.97390 \pm 0.00027$ (Marciano) $V_{us}/V_{ud} = 0.2294 \pm 0.0026$ (K_{µ2} KLOE)

Fit results:

 $V_{us} = 0.2249 \pm 0.0016$ $V_{ud} = 0.97390 \pm 0.00027$

Fit results assuming unitarity: $V_{us} = 0.2262 \pm 0.0009$

 $P(\chi^2) = 0.43$

fit by M.Antonelli, E. De Lucia

CPT test: the Bell-Steinberger relation

Measurements of $K_S K_L$ observables can be used for CPT test

$$(1 + i \tan \phi_{SW}) [\operatorname{Re} \varepsilon - i \operatorname{Im} \delta] = \frac{1}{\Gamma_S} \sum_f A^*(K_S \to f) A(K_L \to f) = \sum_f \alpha_f$$

$$\begin{aligned} \alpha_{+-} &= \eta_{+-} B(K_{S} \rightarrow \pi^{+} \pi^{-}) \\ \alpha_{00} &= \eta_{00} B(K_{S} \rightarrow \pi^{0} \pi^{0}) \\ \alpha_{00} &= \eta_{00} B(K_{S} \rightarrow \pi^{0} \pi^{0}) \end{aligned} \qquad \begin{bmatrix} \operatorname{Re} \varepsilon - \operatorname{Re} y - i(\operatorname{Im} \delta + \operatorname{Im} x_{+}) \end{bmatrix} \\ &= 2\tau_{S} / \tau_{L} B(K_{L} 13) \\ \begin{bmatrix} 2\operatorname{Re} \varepsilon - (A_{S} + A_{L}) / 4 - i(\operatorname{Im} \delta + \operatorname{Im} x_{+}) \end{bmatrix} \end{aligned}$$

$$\alpha_{+-0} = \tau_{\rm S} / \tau_{\rm L} \eta_{+-0} * B(K_{\rm L} \rightarrow \pi^+ \pi^- \pi^0)$$

$$\alpha_{000} = \tau_{\rm S} / \tau_{\rm L} \eta_{000} * B(K_{\rm L} \rightarrow \pi^0 \pi^0 \pi^0)$$

Calculated with KLOE results by M.Antonelli

CPT test: inputs

 $\tau_{s} = 0.08958 \pm 0.00006 \text{ ns}$ $\tau_{\rm r} = 50.84 \pm 0.23$ ns $B(K_{s} \rightarrow \pi^{+}\pi^{-})/B(K_{s} \rightarrow \pi^{0}\pi^{0}) = 2.2549 \pm 0.0059$ $B(K_L \rightarrow \pi^+\pi^-) = (1.930 \pm 0.017) 10^{-3}$ $B(K_{I} \rightarrow \pi^{0}\pi^{0}) = (9.32 \pm 0.12)10^{-4}$ $\phi^{+-}=0.757\pm0.012$ $\Phi^{00} = 0.762 \pm 0.014$ $B(K_s \rightarrow \pi^+ \pi^- \gamma) < 9 \ 10^{-5}$ $B(K_{I} \rightarrow \pi^{+}\pi^{-}\gamma) = (29 \pm 1)10^{-6}$ $B(K_{I} \rightarrow \pi l \nu) = 0.6705 \pm 0.0022$ $B(K_{s} \rightarrow \pi l \nu) = (11.77 \pm 0.15) 10^{-4}$ $A_{I} = (3.32 \pm 0.06)10^{-3}$ $A_{c} = (1.5 \pm 10.0) 10^{-3}$ $B(K_{s} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (3.2 \pm 1.2)10^{-7}$ $B(K_{I} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 0.1263 \pm 0.0012$ $B(K_s \rightarrow \pi^0 \pi^0 \pi^0) < 1.2 \ 10^{-7}$ $B(K_{I} \rightarrow \pi^{0}\pi^{0}\pi^{0})=0.1997\pm 0.0020$ $\phi^{SW} = (43.51 \pm 0.06)^{O}$ $\Phi^{000} = \Phi^{+-0} = \Phi^{+-\gamma} = [0, 2\pi]$

Im x₁ from a combined fit of KLOE + CPLEAR $A_{s}-A_{L} = 4(\text{Re }\delta + \text{Re }x_{-}) = (-1.8 \pm 10.0)10^{-3}$ $A_s + A_t = 4(\text{Re }\epsilon - \text{Rey}) = (4.7 \pm 10.0)10^{-3}$ + CPLEAR time dependent asymmetry: $(R*_(t)-R_{+}(t))/(+) + (R*_{+}(t)-R_{-}(t))/(+)$ Re $\delta = (3.0 \pm 3.3 \pm 0.6)10^{-4}$ 1 0.44 -0.56 -0.61 Im $\delta = (-1.5 \pm 2.3 \pm 0.3)10^{-2}$ -0.97 -0.91 1 Re x = $(0.2 \pm 1.3 \pm 0.3)10^{-2}$ 0.96 1 Im $x_{+} = (1.2 \pm 2.2 \pm 0.3)10^{-2}$ 1 **Result:** Re $\delta = (3.3 \pm 2.8) 10^{-4}$ 1 -0.27 -0.23 -0.35 Im $\delta = (-1.1 \pm 0.7)10^{-2}$ 1 -0.58 -0.12 Re x = $(-0.03 \pm 0.25)10^{-2}$ 1 0.57 Im $x_{+} = (0.8 \pm 0.7)10^{-2}$

CPT test: accuracy on α_i

We get the following results on each term of the sum

CPT test: KLOE result

Re $\varepsilon = (162.0 \pm 1.3) \ 10^{-5}$ Im $\delta = (1.3 \pm 1.9) \ 10^{-5}$

CPLEAR: Re $\epsilon = (164.9 \pm 2.5) \ 10^{-5}$ Im $\delta = (2.4 \pm 5.0) \ 10^{-5}$

What is left on 2001-2002 data

K_S → πµν	S. Chi, T.Spadaro	preliminary results for winter conf.
π+π− π+π− interferometry	M. Antonelli, Di Domenico, M. Testa, ref. : I	KLOE memo 310 F.Ambrosino, M.Napolitano
K _{Lμ3} form factor slopes	M.Antonelli, M.Dreucci, C.Gatti, A.Sibidanov	just started
$BR(K_{Le3\gamma})$	M.Antonelli M.Dreucci, C.Gatti (+student?)	not yet started
v_{μ} mass	A. Zaitsev	just started
incoherent regeneration	S.Bocchetta, A.Passeri F.Ceradini	in progress

$K_S \rightarrow \pi \mu \nu$

- Measurement never done before
 More difficult than K_{Se3}:

 Lower BR: expect 4×10⁻⁴
 Background events from K_S → ππ, π → μν: same PIDs of the signal
- Preselection + TOF + dpos + ρ_{vtx} + $p^*(\pi) vs p^*(\mu)$
- Efficiency estimate from $K_{L\mu3}$ early decays and from MC + data control samples: on the way

Event counting from the fit to $E_{miss}(\pi\mu) - P_{miss}$: ~ 3% stat error, NOW

Interference in the channel $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- Kinematic fit
- Efficiency with data/MC corrections
- Systematic checks:
 - $M_{inv}(4\pi) vs \Delta t$
 - fit vs resolution
 - fit vs cut on χ^2_{fit}
- Δm compatible with PDG
- Fit to extract the decoherence parameter (Δm fixed to PDG):

$$\zeta_{\text{KS-KL}} = 0.043^{+0.038}_{-0.035}_{\text{stat}} \pm 0.008_{\text{syst}}$$

$$\zeta_{\text{K0-K0}} = (0.24^{+0.21}_{-0.19}_{\text{stat}} \pm 0.02_{\text{syst}})10^{-5}$$

$\mathbf{K}_{L\mu3}$ form factor slopes

A first attempt to fit the slope parameters on $K_{L\mu3}$ decays has been made (A. Sibidanov)

Analysis status of the art:

- muon cluster efficiency ready
- all informations needed to reach the required purity combined into a NN (TOF, E/p, I, E_{miss}cP_{miss})
- 20% data-MC discrepancy in NN output
- results on λ_0 depend on the fit range

Analysis on 2004-2005 data sample (1)

Rare K _S decays		
$K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	A.Antonelli, M.Moulson, D.Bowring	advanced status
	M.Martini, S.Miscetti M.Martini, S.Miscetti	update in progress γγ in progress
$K_{\rm S} \rightarrow \pi^+ \pi^- e^+ e^-$	F.Crucianelli, C.Gatti	just started
$ \begin{array}{c} \mathbf{K}_{\mathrm{S}} \rightarrow \pi^{+}\pi^{-}\gamma \\ \mathbf{K}_{\mathrm{S}} \rightarrow \mu^{+}\mu^{-}, \ e^{+}e^{-} \end{array} $	M.Palutan, T.Spadaro	not yet started not yet started

All of the following analyses need the MC 04-05 production

$K_S \rightarrow \pi^+\pi^-\pi^0$: analysis strategy

PDG04: BR= $(3.2\pm1.2)\times10^{-7}$ χ PT: BR= $(2.4\pm0.7)\times10^{-7}$ After preselection (Kcr+2trks+ π^0):

- S/B = 7×10^{-4} (τ' and Dalitz)
- 16 signal evts. with 740 pb⁻¹ (ε_{sig} =7%)

 $N_{found}=6; N_{bkg}=3.5\pm1.3; \epsilon_{sig}=1.4\%$

$K_S \rightarrow \pi^+\pi^-\pi^0$: prospects for 2 fb⁻¹

Result presented at KPW05 based on 740 pb⁻¹

BR = 2.8	+3.7 -2.1	×	10-7
----------	-----------	---	------

Assuming	Results for 2 fb ⁻¹
 Central value does not change No further effort made to reduce background 	 BR = (2.8^{+2.0}_{-1.5}) × 10⁻⁷ ~16 counts, of which ~9 background
• Further efforts completely eliminate background	• BR = (2.8 ^{+1.4} _{-1.1}) × 10 ⁻⁷ • ~7 signal counts

Errors do not (yet) include uncertainty in background.

$K_S \rightarrow \pi^0 \pi^0 \pi^0$: prospects for 2 fb⁻¹

• Published result on 2001-2002 sample: BR(K_S \rightarrow 3 π ⁰) < 1.2 × 10⁻⁷

(SM expect. BR ~ 1.9×10^{-9})

- Analysis: K_L -crash tag + six prompt photons + Kinematic fit + ξ_2 , ξ_3 estimators
- + N_{found}=2; N_{bkg}=3.13 \pm 0.82 \pm 0.37 ; $\epsilon_{sig\,|\,tag}$ = 24.4%
- BKG composition: 88% double splitting, 6% double accidental, 6% fake Kcrash

What should we expect (as of KPW05):

- 1) Increase of statistics: \times 5 Luminosity + \times 1.3 K_L vtx tag
- 2) Improved bkg rejection:
 - tuning of recover splitting algorithm: $N_{found}=0$; $N_{bkg}=3.13 \rightarrow \sim 2$
 - further improvement is expected on kinematic rejection

 $K_S \rightarrow \gamma \gamma$

NA48/1 measurement with 2.6% accuracy: BR(K_S → γγ) = (2.78 ± 0.06 ± 0.04) x 10⁻⁶ obtained from a fit to the Z vertex distribution (K_L → γγ background is a relevant component in the fit)

• Differs from CHPT O(p4) by 30%, useful to fix O(p6) counterterm.

Analysis strategy:

- K_L-crash tag
- No recover splitting (major bkg = $K_S \rightarrow 2\pi^0$ with two merged/lost photons) and large angular acceptance
- Kinematic fit to exploit two body kinematics

Event yield for 2.5 fb⁻¹:

 $80 \times 10^{6} \text{ K}_{\text{L}}$ -crash events expected $\Rightarrow N(\text{K}_{\text{S}} \rightarrow \gamma \gamma, \text{ tagged}) = 2240 \text{ events}$

acceptance: > 0.8 (no kine cuts) $\Rightarrow N_{sig} = 1800 \text{ events}$

$K_S \rightarrow \gamma \gamma$: a first look at data

A kinematic fit is performed to test the $K_s \rightarrow \gamma\gamma$ hypothesis: data vs MC comparison on χ^2_{fit}

$$K_{S} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$$

• NA48 measurement with 6.4% accuracy:

BR(K_S $\rightarrow \pi^+\pi^-e^+e^-) = (4.71 \pm 0.23 \pm 0.22) \times 10^{-5}$

based on **620** events (1999 data, EPJ C30 33, 2003)

• They also measured the CP-violating asimmetry

$$A = \frac{N(\sin\phi\cos\phi>0) - N(\sin\phi\cos\phi>0)}{N(\sin\phi\cos\phi>0) + N(\sin\phi\cos\phi>0)} = (-1.1 \pm 4.1)10^{-2}$$

where ϕ is the angle between the e^+e^- and $\pi^+\pi^-$ planes in K_S rest frame

(for K_L NA48+KTeV measured A= $(13.8 \pm 2.2)10^{-2}$)

KLOE event yield with 2.5 fb⁻¹: ≈ 35000 events with Kcrash tag Acceptance for >= 3 trk vertex: ≈ 0.1 (MC generator already included in DBV24) Kinematic closure to evaluate the missing track momentum

$K_S \rightarrow \pi \pi \gamma$: photon spectrum

- Physics interest is in the analysis of γ energy spectrum: interference between IB and E1-DE terms estimated in χpT to give a BR ~ $10^{-5}-10^{-6}$
- Theoretical prediction based on $O(p^2)$ loop + $O(p^4)$ -counterterm
- Sum of loop and counter term can lead either to an expected **excess** or **lack** of events
- Toy MC fit: using 10⁶ events with E_{γ}^{*} > 20 MeV, sensitivity to BR's around 10⁻⁶
- Events selected NOW:
- $5 \times 10^7 \text{ K}_{\text{S}} \rightarrow \pi^+ \pi^-(\gamma),$ $3.5 \times 10^5, \text{ E}^*_{\gamma} > 20 \text{ MeV}$ • 2 fb⁻¹: 2 × 10⁶ evts, E^{*}_{\gamma} > 20 MeV

Physics target reachable with 2 fb⁻¹

Analysis on 2004-2005 data sample (2)

2) Improve on BR(K_L $\rightarrow \pi^+\pi^-$): KLOE present result is $6 \times 10^{-3}_{stat} + 6.6 \times 10^{-3}_{syst}$ (KTeV: 6×10^{-3})

3) Measure BR($K_L \rightarrow \pi^0 \pi^0$): KTeV fractional error is 1.2×10^{-2}

(2.4% stat from C.Bloise last presentation on this item)

CONCLUSIONS

Impact of KLOE results on neutral kaon physics made a considerable step during 2005:
 BR(K_S→π⁰π⁰π⁰), τ_L, BR(K_L), BR(K_{Se3}), BR(K_S→ππ), K_{Le3} ff

2) First part of 2006: first measurement of $BR(K_{Su3})$

3) Next year a number of rare K_S decays: $\pi^{0}\pi^{0}\pi^{0}$, $\pi^{+}\pi^{-}\pi^{0}$, $\gamma\gamma$, $\pi^{+}\pi^{-}e^{+}e^{-}$, $\pi^{+}\pi^{-}\gamma$,...!!!