Latest news and perspectives on the $\phi \rightarrow f_0(980)\gamma$ analysis

> S.Miscetti For the scalar phidec wg

- > Short report on $\pi^+\pi^-\gamma$ final results
- > perspectives on $\pi^+\pi^-\gamma$ final state
- > situation of the $\pi^0 \pi^0 \gamma$ final state:
 - fits to the \sqrt{s} -dependence of cross sections
 - status of KLOE memos ...
 - latest results on the Dalitz-plot fit

KLOE General Meeting LNF 14-dec-2005

Scalar Mesons at a ϕ - factory

How a $\phi\mbox{-factory}$ can contribute to the understanding of the scalar mesons

Scalar Mesons Spectroscopy: $f_0(980), f_0(600)$ and $a_0(980)$ are accessible (κ not accessible) through $\phi \rightarrow S\gamma$; Questions: 1. Is $f_0(600)$ needed to describe

the mass spectra ?

2. "couplings" of $f_0(980)$ and $a_0(980)$ to $\phi \cong |ss\rangle$ and to KK, $\pi\pi$ and $\eta\pi$.

→ 4-quark vs. 2-quark states

How to detect these radiative decays

$$\begin{split} \phi &\Rightarrow \mathbf{f_0}(\mathbf{980})\gamma &\Rightarrow \pi^+\pi^-\gamma \\ &\Rightarrow \pi^0\pi^0\gamma \\ &\Rightarrow K^+K^-\gamma \quad [\ 2m(K)\sim m(f_0)\sim m(\phi) \] \Rightarrow \text{ expected BR } \sim 10^{-6} \\ &\Rightarrow K^0K^0\gamma & \text{``} & \sim 10^{-8} \end{split} \\ \phi &\Rightarrow \mathbf{a_0}(\mathbf{980})\gamma &\Rightarrow \eta\pi^0\gamma \\ &\Rightarrow K^+K^-\gamma & \Rightarrow \text{ expected BR } \sim 10^{-6} \\ &\Rightarrow K^0K^0\gamma & \Rightarrow \text{``} & \sim 10^{-8} \end{aligned} \\ \phi &\Rightarrow \mathbf{f_0}(\mathbf{600})\gamma &\Rightarrow \pi^+\pi^-\gamma \\ &\Rightarrow \pi^0\pi^0\gamma \end{split}$$

General Comments:

 \rightarrow fits of mass spectra needed to extract the *signals*: this requires a *parametrization* for the signal shape;

 \rightarrow the unreducible **background** is not fully known: a *parametrization* is required and some parameters have to be determined from the data themselves;

→ sizeable interferences between *signal* and *background*

How to extract the signal:

- 1. Electric Dipole Transitions: $\rightarrow \Gamma(E1) \propto E_{\gamma}^{3} \times |\mathbf{M}_{if}(\mathbf{E}_{\gamma})|^{2}$
- 2. Distortions due to KK thresholds (Flatte'-like).

Kaon-loop (by N.N.Achasov): for each scalar meson S: (**g**_{Sππ}, **g**_{SKK}, **M**_S)

No-Structure (*by G.Isidori and L.Maiani*): a modified BW + a *polynomial continuum*: (**g**_{φ**S**γ}, **g**_{**S**ππ}, **g**_{**S**KK}, **M**_{**S**} + pol. cont. parameter)

Scattering Amplitudes (by M.E.Boglione and M.R.Pennington) $A \propto (a_1+b_1m^2+c_1m^4) T(\pi\pi \rightarrow \pi\pi) + (a_1+b_1m^2+c_1m^4) T(\pi\pi \rightarrow KK)$ \rightarrow pole residual g_{ϕ}

Definition of the relevant couplings ($S=f_0$ or a_0):


```
The unreducible backgrounds
(\pi^+\pi^-): huge backgrounds:
Initial + Final state radiation (ISR+FSR)
\phi \rightarrow \rho^{\pm} \pi^{\pm} with \rho^{\pm} \rightarrow \pi^{\pm} \gamma
(\pi^0\pi^0): large backgrounds:
e^+e^- \rightarrow \omega \pi^0 with \omega \rightarrow \pi^0 \gamma
\phi \rightarrow \rho^0 \pi^0 with \rho^0 \rightarrow \pi^0 \gamma
HOWEVER, practically background free for M_{\pi\pi} above 700 MeV
(\eta \pi^0): small backgrounds:
           e^+e^- \rightarrow \omega \pi^0 with \omega \rightarrow \eta \gamma
           \phi \rightarrow \rho^0 \pi^0 with \rho^0 \rightarrow \eta \gamma
```

 $(\pi^+\pi^-)$ vs. $(\pi^0\pi^0)$: "same amplitude" with different background !

```
(\eta\pi^0) is the "cleanest" sample:
Not discussed today .. no news since Capri 05
```

Fit to the m($\pi^+\pi^-$) spectrum F= ISR + FSR + $\rho\pi$ + scalar ± interference

Parameter uncertainties are dominated by the systematic errors:

parameter	KL	NS
$m_{ m f_0}~({ m MeV})$	980-987	973 - 981
$g_{\mathrm{f_0K^+K^-}}~(\mathrm{GeV})$	5.0 - 6.3	1.6-2.3
$g_{\mathrm{f}_{0}\pi^{+}\pi^{-}}~(\mathrm{GeV})$	3.0-4.2	0.9 - 1.1
$R=g_{\rm f_0K^+K^-}^2/g_{\rm f_0\pi^+\pi^-}^2$	2.2-2.8	2.6 - 4.4
$g_{\phi \mathrm{f}_0 \gamma} \; (\mathrm{GeV}^{-1})$	_	1.2 - 2.0

Comments:
→Mass value OK [PDG 980 ± 10 MeV]
→R > 1 in both fits (in agreement with published values π⁰π⁰γ)
→KL couplings >> NS couplings: effect of polynomial continuum
→NS suggests "large" coupling to the \$\phi\$ (see following)

 $g_{\phi} = 6.6 \times 10^{-4}$ → BR(ϕ → $f_0(980)\gamma$) × BR($f_0(980)$ → $\pi^+\pi^-$) ~ 3 × 10^{-5} [similar conclusion from BP analysis of $\pi^0\pi^0\gamma$ data (KLOE + SND)]

Summarizing:

The peak at ~980 MeV is interpreted in both KL /NS as due to the decay $\phi \rightarrow f_0(980)\gamma$ with a neg. interference with FSR. The couplings suggest the $f_0(980)$ to be strongly coupled to kaons and to the ϕ . No space for $f_0(600)$. Scattering Amplitude gives a marginal agreement.

Submitted to PLB (HEP-EX 0511031)

FB asymmetry vs. $m(\pi\pi)$:

→ Clear signal ~ 980 MeV

 \rightarrow Interesting comparison with simulation:

The simulation provides a "qualitative" description of: $\rightarrow f_0(980)$ region behaviour (the signal is reproduced); $\rightarrow Low$ mass behaviour (low mass tail of the signal. *Remarkable result*: not a fit but an **absolute prediction**

Cross section dependence on \sqrt{s} :

Absolute prediction based on KL fit parameters

Concluding remark: $\pi^+\pi^-\gamma$ is a powerful tool to test scalar production: mass spectrum, FB asym. and \sqrt{s} dependence the now collected 2 fb⁻¹ at $\phi \rightarrow$ factor 6 more of what already published + the finer energy scan around the ϕ will allow us to test deeply this model

Status of $\pi^0 \pi^0 \gamma$ final state

- As shown at Capri, we have reached a stable conclusive result on the data analysis while we are completing the fit on the dalitz-plot.
- Today we show the results of the fits to the $\pi\pi\gamma$ visible cross section obtained by repeating, with our new process independent photon pairing procedure, the analysis "as for 2000 data" i.e. neglecting any interference between VDM and scalar terms.
- From these fits we will extract the parameters describing the $e^+e^- \rightarrow \omega \pi^0$ and the BR($\phi \rightarrow \pi \pi \gamma$).
- To understand how well we do all of this (+ for checking the normalization of our main background) we have also analized a large sample of φ →ηγ decays in 7 photons (prescaling 1/50 while running our 5-photon selection).

- With our new, process independent, photon pairing procedure, we build the invariant mass $\pi^0\gamma$ and select 4000 the one closest to M ω
- As for 2000 data, we then count as :
 - ωπ events the ones in
 within 3 sigma from Mω
 - $S\gamma$ all the others

ωπ vs Sγ events (Angular distributions)

$\omega\pi$: energy dependence of the xsec

$$\sigma^{\omega\pi}(\sqrt{s}) = \sigma_0^{\omega\pi}(\sqrt{s}) \left| 1 - Z \frac{M_{\phi} \Gamma_{\phi}}{D_{\phi}} \right|^2, \qquad (11)$$

where $\sigma_0^{\omega\pi}(\sqrt{s})$ represents the nude cross section for the not-resonant process, Z is the complex interference parameter (i.e. the ratio between the ϕ decay amplitude and the not-resonant process), while M_{ϕ} , Γ_{ϕ} and $D_{\phi} = M_{\phi}^2 - s - i\sqrt{s}\Gamma_{\phi}$ are respectively the mass, the width and the inverse propagator of the ϕ meson.

$\omega\pi$: Fit to the visible xsec

 $\phi \! \rightarrow \! \eta \gamma$: energy dependence of the cross sections

$$12\pi \Gamma_{\phi}^{e^+e^-} \Gamma_{\phi}^{\pi\gamma} \left| \frac{e^{i\pi}}{D_{\phi}} + \frac{R_{\rho}}{D_{\rho}} + \frac{R_{\omega}}{D_{\omega}} \right|^2 \left(\frac{M_{\phi}}{\sqrt{s}} \right)^3 \left(\frac{Q_{\eta}(\sqrt{s})}{Q_{\eta}(M_{\phi})} \right)^3$$
(3)
3 Fit parameters :
- α normalization
- M_{ϕ}, Γ_{ϕ}
We use $\Gamma_{\phi}^{II}(\text{KLOE}) =$
1.320 ±0.017 ±0.015 keV
 $\chi^2 = 16.8/17$
 $\alpha = 1.014 \pm 0.010$
 $M_{\phi} = 1019.40 \pm 0.01$ MeV
 $\Gamma_{\phi} = 4.36 \pm 0.09$ MeV

SQRTS (MeV)

 $\phi \to f_0 \, \gamma \,$: energy dependence of the xsec

$$\sigma_0^{S\gamma}(s) = 12\pi\Gamma_{\phi}^{e^+e^-}\Gamma_{\phi}^{S\gamma} \left|\frac{1}{D_{\phi}(s)}\right|^2 \left(\frac{M_{\phi}}{\sqrt{s}}\right)^3 R_{\Gamma}(s)$$

$f_0\gamma$: Determination of BR ($\phi \rightarrow f_0\gamma \rightarrow \pi^0\pi^0\gamma$)

FIT	α	$M_{\phi}~({ m MeV})$	$\Gamma_{\phi}~({ m MeV})$	$\chi^2/$ Ndof
(A) All free	1.319 ± 0.012	1019.34 ± 0.01	4.60 ± 0.09	13.9/11
(B) Γ_{ϕ} fixed	1.285 ± 0.001	1019.21 ± 0.35	4.358	17.2/12
(C) M_{ϕ} , Γ_{ϕ} fixed	1.223 ± 0.001	1019.46	4.26	21.8/12

From the value of α we determine the value of $\Gamma(\phi \to f_0 \gamma)$ at M_{ϕ} which is proportional to $\left(g_{f_0}^{K^+K^-}g_{f_0}^{\pi^+\pi^-}\right)^2$. We get $\Gamma(\phi \to \pi^0\pi^0\gamma) = (0.498 \pm 0.005 \pm 0.022)$ keV. The systematic error is dominated by the variation of the three fits. When dividing by $\Gamma_{\phi}(M_{\phi})$ we determine the $BR(\phi \to f_0\gamma)$ to be:

BR(
$$\phi \rightarrow \pi^0 \pi^0 \gamma$$
) = (1.057 ± 0.046_{fit} ±0.017_{norm}) •10⁻²

where the normalization error reflects our knowledge of Γ_{ϕ}^{ll} . The result is in pretty good agreement with our old measurement.

First conclusions on $\pi^0\pi^0\gamma$ final state

- When neglecting the interference between $\omega\pi$ and Sy we are able to distinguish the most relevant features of the $\pi\pi\gamma$ events:
 - There is a clear resonant not resonant component
 - The not resonant component is dominated by $e^+e^- \rightarrow \omega \pi \rightarrow \pi \pi \gamma$ events with a well defined spin 1 angular dependence.
 - The resonant component is a scalar
 - If we fit the not-resonant component we find the parameters describing the interference with the ϕ meson to be in reasonable agreement with SND.
- If we fit the resonant component we find that the two points far away the ϕ peak are not perfectly described by our model. However we extract the BR ($\phi \rightarrow \pi\pi\gamma$)
- All of this work has been summarized in a KLOE Memo 319

Improved KL parametrization for the $\pi^0\pi^0\gamma$

➤ Insertion of a KK phase:

N.N.Achasov, private communication NOW PUBLISHED HEP-PH 0512047

$$\tan \delta_B^{K\bar{K}} = \sqrt{m^2 - 4m_{K^+}^2} f_K(m^2) = \frac{\sqrt{m^2 - 4m_{K^+}^2}}{\Lambda_K} \operatorname{atan} \frac{m_2^2 - m^2}{m_0^2}$$

Beyond to its contribution in the interference term, IT CHANGES THE SCALAR TERM AMPLITUDE IN THE $M_{\pi\pi} < 2M_{K}^{+}$ REGION

$$M_{sig} = \sqrt{\frac{1 - f_K(m^2)\sqrt{4m_{K^+}^2 - m^2}}{1 + f_K(m^2)\sqrt{4m_{K^+}^2 - m^2}}}g(m)e^{i\delta_B^{\pi\pi}} \left((\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}\right)\sum_{R,R'}g_{RK^+K^-}G_{RR'}^{-1}g_{R'\pi^0\pi^0}g(m)e^{i\delta_B^{\pi\pi}}\left((\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}\right)\sum_{R,R'}g_{RK^+K^-}G_{RR'}^{-1}g_{R'\pi^0\pi^0}g(m)e^{i\delta_B^{\pi\pi}}g(m)e^{$$

> New parametrization of the $\pi\pi$ phase:

$$\tan(\delta_B^{\pi\pi}) = -\frac{p_\pi}{2m_\pi} \Big(b_0 - b_1 \frac{p_\pi^2}{(2m_\pi)^2} + b_2 \frac{p_\pi^4}{(2m_\pi)^4} \Big) \frac{1}{1 + p_\pi^2 / \Lambda^2}$$
$$p_\pi = \sqrt{m^2 - 4m_{\pi^+}^2}$$

new KL parametrization on old KLOE data (I)

Achasov-Kiselev: combined fit to KLOE 2000 + $\pi\pi$ scattering data

new KL parametrization on old KLOE data (II)

Achasov-Kiselev: combined fit to KLOE 2000 + $\pi\pi$ scattering data

Theory advantages of the new parametrization

✓ Able to reproduce Mass-spectrum, δ_0^0 and inelasticity ✓ Sum of overlapping resonances with the correct propagator matrix

✓ A lot of theory restrictions applied:

- The $\pi\pi$ scattering length a_0^0 fixed to the recent calculation of Colangelo

- In the $\pi\pi$ scattering amplitude the "famous?" Adler zero is granted in the region below the threshold $(0 < m_{\pi\pi}^2 < 4M_{\pi}^2)$

- It needs a $\sigma(600)$ meson to obtain a good fit.

K-loop fit results: $f_0 + \sigma$

- Discussing with Achasov we realized that the parameters of σ and the KK, $\pi\pi$ phases are very much related.
- To let them vary freely we should either fit also the data on δ_0^0 or impose the theory restrictions explained before which are not easy to implement in our fitting function.
- We therefore followed a much more simple approach:
 - (Fit A) we left free only the f_0 parameters + VDM
 - (Fit B) as (Fit A) leaving the sigma mass to vary

K-loop fit results: $f_0 + \sigma$ (MASSES) $\sqrt{s=1019.6 \text{ MeV}}$

K-loop fit results: $f_0 + \sigma$ (dalitz-slices) $\sqrt{s} = 1019.6$ MeV

K-loop fit results: $f_0 + \sigma$ (phases)

 $f_0 + VDM + M\sigma FIXED$

 $f_0 + VDM + M\sigma FIXED$

K-loop fit results: $f_0 + \sigma$ (compositions)

Fit results at $\sqrt{s} = 1019.6$ MeV:

	$\mathbf{f_0} \textbf{+} \sigma \left(\mathbf{M}_{\sigma} \textbf{fixed} \right)$	$\mathbf{f_0} \textbf{+} \sigma \left(\mathbf{M}_{\sigma} \textbf{ free} \right)$	$\boldsymbol{f_0} \to \pi^{+}\pi^{-}$
M _{f0} (MeV)	987.1 ± 0.1	987.2 ± 0.1	980 – 987
g _{fK⁺K⁻} (GeV)	3.53 ± 0.04	3.80 ± 0.07	3.9 – 6.5
$g_{f\pi^+\pi^-}(GeV)$	-1.95 ± 0.01	-2.03 ± 0.01	2.8 - 3.8
M_{σ} (MeV)	541	484.6 ± 21.9	
α _{ρπ} (φ)	0.76±0.18	0.69 ± 0.05	
C _{ωπ} (GeV ⁻²)	0.826 ±0.003	0.827 ± 0.001	
$\phi_{\omega\pi}$	0.21 ±0.03	0.47 ± 0.05	
C _{ρπ} (GeV ⁻²)	0.198 ±0.045	0.62 ± 0.23	
$\phi_{ ho\pi}$	3.14 ± 1.98	3.14 ±2.45	
M_{ω} (MeV)	782.1 ± 0.3	782.2 ± 0.2	
$\delta_{b_{\rho}}$ (degree)	7.5 ± 3.2	31.0 ± 4.0	
χ^2 /ndf	2862/ 2676	2845 / 2675	
Ρ(χ²)	0.6 %	1.1 %	

Extrapolating at $\sqrt{s} = 1019.4-1019.8$ MeV:

Not too bad ... by keeping the results of the fit at 1019.6 MeV. This is an absolute normalization!

No Structure parametrization

G.Isidori, L.Maiani, S.Pacetti, private communication

► Flatte-like propagator: $\Gamma_{f_0}(s) = (g_{12}^{f_0})^2 \frac{v_{\pi}(s)}{8\pi s} + (g_{KK}^{f_0})^2 \frac{v_K(s) + v_{K^0}(s)}{8\pi s}$ Now we can extract the $\mathbf{g}_{S\pi\pi}$, \mathbf{g}_{SKK} couplings $v_{\alpha}(s) = \sqrt{\frac{s}{4} - M_{\alpha}^2}$.

> New phases related to the particle velocity

 \succ Parametrization with the $\sigma(600)$ [M_{σ} and g_{$\sigma\pi\pi$} fixed to BES values]

$$F_{\text{Flatté}}^{\text{scal}}(s) = \frac{g_{12}^{f_0} g_{f_0\gamma}^{\phi}}{s - M_{f_0}^2 + i\sqrt{s}\Gamma_{f_0}(s)} + \frac{a_0 e^{\frac{ib_0 v_{\pi}(s)}{M_{\phi}}}}{M_{\phi}^2} + \frac{a_1 e^{\frac{ib_1 v_{\pi}(s)}{M_{\phi}}}}{M_{\phi}^4} (s - M_{f_0}^2)$$

$$F_S^{\sigma}(s) = \frac{g_{12}^{f_0} g_{f_0\gamma}^{\phi}}{s - M_{f_0}^2 + i\Gamma_{f_0}(s)\sqrt{s}} + \frac{a_0 e^{\frac{ib_0 v_{\pi}(s)}{M_{\phi}}}}{M_{\phi}^2} + \frac{g_{12}^{\sigma} g_{\sigma\gamma}^{\phi}}{s - M_{\sigma}^2 + i\Gamma_{\sigma}(s)\sqrt{s}}$$

 b_0 fixed to ensure the proper behaviour of δ_0^{0} near the $M_{\pi\pi}$ threshold

Fit results: new No Structure parametrization

	f ₀ only	f ₀ + σ	$f_0 \rightarrow \pi^+ \pi^-$
M _{f0} (MeV)	987.5 ± 0.4	979.8 ± 0.4	968 – 979
$G_{\phi f \gamma}(GeV^{-1})$	2.83 ± 0.03	2.33 ± 0.02	1.2 – 1.8
$G_{\phi\sigma\gamma}(GeV^{-1})$		(0.0 ± 0.1) × 10 ⁻⁶	
g _{fK⁺K[−]} (GeV)	0.6 ± 0.1	0.0 ± 5.8	1.2 – 2.8
$g_{f\pi^+\pi^-}(GeV)$	1 .360 ± 0.006	1.209 ± 0.017	0.9 – 1.2
a ₀	5.38 ± 0.02	2.81 ± 0.05	6.00 ±0.02
a ₁	2.56 ± 0.02		4.10 ± 0.04
b ₁ (rad/GeV)	-0.72 ± 0.02		3.13 ± 0.05
α _{ρπ} (φ)	1.32 ± 0.02	0.92 ± 0.09	
С _{шл} (GeV ⁻²)	0.952 ± 0.001	0.940 ± 0.007	
$\phi_{\omega\pi}$	0.036 ± 0.009	0.000 ± 0.007	
C _{ρπ} (GeV ⁻²)	0.21 ± 0.02	0.29 ± 0.22	
$\varphi_{\rho\pi}$	0.65 ± 0.09	2.7 ± 0.3	
M_{ω} (MeV)	781.70 ± 0.08	782.3 ± 0.2	
$\delta_{b_{\rho}}$ (degree)	87.1 ± 0.5	70 ± 7	
χ^2 /ndf	2784.1 / 2672	2981.2 / 2673	
$P(\chi^2)$	6.4%	0.2 × 10 ⁻⁴	

Summary for the ppg final state

- * S-dependence of $\pi^0 \pi^0 \gamma$ x-sec done! KLOE memo submitted. For a PLB paper waiting for the new scan data + analysis of $\pi^+\pi^-\pi^0\pi^0$
- Fit results to the Dalitz at 1019.6 with new KL parametrization is reasonable !
 + It has a good ππ phase behaviour and other theoretical advantages.

KLOE memo on the fit to the dalitz-plot in writing.

PLB paper planned for the KL + NS fit around Μφ. Final blessing expected for Jan 06.

Summary and Perspectives on $f_0(980)$

1. $f_0(600)$: required in the $\pi^0\pi^0$ channel not in the $\pi^+\pi^-$ one: no clear answer by now ... although the large S/B difference in the spectrum should be considered.

2. Couplings:

with the KL parametrization the $\pi^+\pi^-/\pi^0\pi^0$ final state give results in good agreement:

with the NS analysis contradictory results obtained:

$gf_0K^+K^-(GeV) = 1.6 - 2.3$	VS	0.6
$gf_0 \pi^+\pi^-$ (GeV) = 0.9 - 1.1	VS	1.36
$g\phi f_0\gamma$ (GeV-1) = 1.2 - 2.0	VS	2.8
$Mf_0(MeV) = 973-981$	vs	987.5

suggesting: too much freedom of the parametrization?

KLOE perspectives on scalar mesons

- 1. Conclude analysis on 2001-2002 data sample for $f_0(980)$ (neutral final states) and $a_0(980)$.
- 2. With **2000 pb⁻¹** @ **\$\$\$ peak**:

improvement expected for $f_0 \rightarrow \pi^+\pi^$ combined fit $\pi^+\pi^-$ AND $\pi^0\pi^0$ search for f_0 , $a_0 \rightarrow KK$

3. With new forthcoming energy scan data improved study of the √s-dependence of the cross-section;
 Off-peak: "test run" of γγ → π⁰π⁰

Fit function: the Achasov parametrization

$$\frac{d\sigma(e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma)}{dmdm_{\pi\gamma}} = \frac{\alpha m_{\pi\gamma}m}{3(4\pi)^{2}s^{3}} \{ \cdot ||\mathbf{A}_{scalar}||^{2} + f_{0\gamma} \\ \frac{1}{4} F_{1}(m^{2}, m_{\pi\gamma}^{2})|_{\mathbf{D}_{\phi}(s)}^{(e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}} \\ \frac{1}{16} F_{1}(m^{2}, m_{\pi\gamma}^{2})|_{\mathbf{D}_{\phi}(s)}^{(e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}} + C_{\rho\pi}) \\ \frac{1}{2} F_{1}(m^{2}, \tilde{m}_{\pi\gamma}^{2})|_{\mathbf{D}_{\phi}(s)}^{(e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}} + C_{\rho\pi}) \\ \frac{1}{2} F_{2}(m^{2}, m_{\pi\gamma}^{2})Re[((\frac{e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*} \\ \frac{1}{2} F_{2}(m^{2}, m_{\pi\gamma}^{2})((\frac{e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*} \\ + \frac{1}{3} F_{2}(m^{2}, m_{\pi\gamma}^{2})((\frac{e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*} \\ + F_{3}(m^{2}, m_{\pi\gamma}^{2})((\frac{e^{i\phi_{\phi\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*})]\}, \\ F_{3}(m^{2}, \tilde{m}_{\pi\gamma}^{2})((\frac{e^{i\phi_{\omega\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\sigma}g_{\rho\pi\gamma}} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*})]\}, \\ F_{3}(m^{2}, \tilde{m}_{\pi\gamma}^{2})((\frac{e^{i\phi_{\omega\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\sigma}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*})]\}, \\ F_{3}(m^{2}, \tilde{m}_{\pi\gamma}^{2})((\frac{e^{i\phi_{\omega\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\sigma}g_{\rho\pi\gamma}}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*})]\}, \\ F_{3}(m^{2}, \tilde{m}_{\pi\gamma}^{2})((\frac{e^{i\phi_{\omega\phi}(m_{\phi}^{2})}g_{\phi\gamma}g_{\phi\sigma}g_{\rho\pi\gamma}}}{D_{\phi}(s)} + C_{\rho\pi})\frac{e^{i\delta_{\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})})^{*})]\}, \\ F_{3}(m^{2}, \tilde{m}_{\pi\gamma}^{2})(\frac{e^{i\phi_{\phi}}}{D_{\phi}(s)} + C_{\phi\pi})\frac{e^{i\delta_{\phi}}}}{D_{\phi}(s)} + C_{\phi\pi})\frac{e^{i\delta_{\phi}}}}{D_{\phi}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}}{D_{\phi}(\tilde{m}_{\pi\gamma}^{2})})^{*})]$$

✓ M_{σ} free or fixed to BES value (541 MeV)

IV - The Forward-Backward asymmetry: $A = (N(\theta^+ > 90^\circ) - N(\theta^+ < 90^\circ)) / sum$ $\pi^+\pi^- system: A(ISR) C-odd$ A(FSR) & A(scalar) C-even $Cross-section: |A(tot)|^2 = |A(ISR)|^2 + |A(FSR)|^2 + |A(scalar)|^2$ + 2Re[A(ISR) A(FSR)] + 2Re[A(ISR) A(scalar)] + 2Re[A(FSR) A(scalar)]

Effect of the scalar amplitude on the FB asymmetry: Plot of A in slices of $m(\pi\pi)$;

Comparison with simulation with and without the scalar amplitude.

ωπ events vs \sqrt{s} (angular distributions)

$\omega\pi$: FIT RESULTS to the visible xsec

FIT	σ ₀ (nb)	釈 (Z)	ণ্ড (Z)	$\sigma'({ m nb}/{ m MeV})$	$\chi^2/$ Ndof
(A) σ' fixed	0.731 ± 0.035	0.060 ± 0.020	-0.157 ± 0.030	0.0048	5.0/11
(A) σ' fixed	0.748 ± 0.010	0.049 ± 0.016	-0.152 ± 0.007	0.0073	4.8/11
(A) All free	0.756 ± 0.245	0.041 ± 0.040	-0.148 ± 0.124	0.0098 ± 0.0114	4.5/10
FIT	σ ₀ (nb)	釈 (Z)	3 (Z)	A_1	$\chi^2/$ Ndof
(B) A_1 fixed	0.745 ± 0.014	0.051 ± 0.012	-0.153 ± 0.007	-0.114	5.0/11
(B) A_1 fixed	0.746 ± 0.028	0.050 ± 0.020	-0.153 ± 0.022	-0.150	4.9/11
(B) All free	0.743 ± 0.016	0.054 ± 0.019	-0.154 ± 0.012	-0.005 ± 0.001	5.1/10
FIT	σ ₀ (nb)	死 (Z)	3 (Z)	A_1	$\chi^2/$ Ndof
(C) A_1 fixed	0.745 ± 0.011	0.052 ± 0.020	-0.154 ± 0.012	-0.114	5.0/11
(C) A_1 fixed	0.746 ± 0.007	0.051 ± 0.001	-0.154 ± 0.001	-0.150	5.0/11
(C) All free	0.743 ± 0.009	0.055 ± 0.016	-0.154 ± 0.006	-0.012 ± 0.002	5.1/10

$$\sigma_0^{\omega\pi} = (0.75 \pm 0.03_{\text{stat}} \stackrel{+0.01}{_{-0.02}}) \text{ nb}$$
(14)

$$\Re(Z) = 0.05 \pm 0.02_{\text{stat}} \pm 0.01$$
 (15)

$$\Im(Z) = -0.15 \pm 0.02_{\text{stat}} - 0.01 \tag{16}$$

in good agreement and with similar accurancy with respect to SND results [26]: $\sigma_0^{\omega\pi} = (0.74 \pm 0.02_{\text{stat}} \pm 0.04_{\text{syst}})$ nb, $\Re(Z) = 0.025 \pm 0.035$, $\Im(Z) = -0.19 \pm 0.05$.