Offline Status Report

M. Moulson, 14 November 2003 Summary presentation for KLOE General Meeting

Outline:

- Status of MC production
- Future MC production requests
- Computing resources
- Offline planning for 2004 run

MC production status

Production completed to date (~450 pb⁻¹ 2001-2002 data)

Program	Events (10 ⁶)	Time (CPU days)	Size (TB)
all_phys	255	1100 (375 ms/ev)	6.9
ppgphok3	36	110 (264 ms/ev)	0.8
neu_kaon	410	1800 (375 ms/ev)	11.0

- Numerous upgrades to simulation
- Time-variable conditions

- Accidental activity from data
- MCDST's

New DB2 view (logger.dtr_mcs_data) and KID protocol (dbmcdst)

To see available files using kls:

kls mcdst "run_nr between 19000 and 21000 and dtr_stream_code='mrn' and mc_mccard_code='all_phys'"

To access files from within ANALYSIS_CONTROL:

input url "dbmcdst:run_nr between 19000 and 21000
and dtr_stream_code='mrn' and
mc_mccard_code='all_phys'"

Further examples available at:

http://www.lnf.infn.it/kloe/private/mc/mcfaq.txt

Problems concerning generation:

- ϕ cross section constant for all_phys 2001
- a_0 produced 10× more frequently than natural
- $K_S K_L$ resonance shape for f_0/a_0
- $\omega \pi^0$ cross section "resonant" for all_phys 2002
- π and ν reversed in $K_S \rightarrow \pi e \nu$ generator
- bug in $\eta \rightarrow \pi^+ \pi^- \gamma$ generator

Problems concerning reconstruction:

- order of hot/dead reversed in DCDELETE
- error in *s*-*t* relations used for DC reconstruction

Problems concerning DST's

• FILFO/par=1 used when streaming rad DST's

If you are aware of any further problems with the MC production that affects your analysis:

- Please communicate it A.S.A.P.,
- in writing (by e-mail),
- to me and Caterina Bloise,
- if appropriate, with solution described

If I/we have not received a *written communication*, the problem is not "known" (and may not be fixed!)

DCDELETE parameters mixed up in MC reconstruction!

Instead of: INSERT DROP_DEAD TSKT DROP_HOT we had: INSERT DROP_HOT TSKT DROP_DEAD DC trigger efficiency not correctly simulated Reconstruction OK: both hot & dead dropped anyway

DCDELETE now simulates DC hardware efficiencies

Error in *s***-***t* **relations used for DC reconstruction!**

Realistic wire sags in MC \rightarrow new *s*-*t* relations for reconstruction *s*-*t* relations obtained from "calibration" using MC cosmic rays Calibration job used DC stereo angles for data instead of MC Large residuals, decreased software efficiencies

Highly advisable to re-reconstruct MC samples A.S.A.P.

A. Antonelli, S. Dell'Agnello, M. Moulson

HW effficiencies in data < 99% on 1st 5 layers

Important for analyses that:

- cut on position of 1st hit: $K_S \rightarrow \pi^+ \pi^- / \pi^0 \pi^0$
- use tracks concentrated near origin

 K^{\pm} analyses

Now simulated by DCDELETE using physmon efficiencies for each run

How well are SW efficiencies reproduced?

HW efficiency vs. DC layer

MC: s-t relations for reconstruction

A. Antonelli, S. Dell'Agnello

physmon diagnostics: Run 24793 + simulation, large cells

C. Bloise, T. Spadaro, M. Testa

Problem: π , μ deposit 20% more energy in MC than in data Observed *e.g.*, using *E/p* distribution for π from $\phi \rightarrow \pi^+ \pi^- \pi^0$ events

Solution: Tweak scintillator response in MC

- π , μ energy loss from restricted Landau distribution + δ -ray generation ($E_{\text{thresh}} = 10 \text{ keV}$)
- δ-rays not explicitly simulated ⇒ do not contribute to signal Assumed to be lost to absorber

Gives good MC-data agreement for peak of *E/p* distribution

Excess as $E/p \rightarrow 0$ for MC relative to data

 π clusters in MC have more fragments than in data? Under study...

Expect these modifications to be available in 1-2 weeks

Minimum request for MC production via new mechanism is ~30M events (or $\sigma \times LSF = 60$ nb)

- 1. All radiative ϕ decays plus $\phi \rightarrow \rho^0 \pi^0$; $\rho^0 \rightarrow \pi^0 \gamma$ and $e^+e^- \rightarrow \omega \pi^0$ 450 pb⁻¹ @ LSF = 5, σ = 49 nb \Rightarrow 110M evts Makes fixing radiative MCDST's less of a priority Satisfies: Radiative group
- 2. Radiative bhabha events: $E_{\gamma} > 100$ MeV, $20^{\circ} < \theta < 160^{\circ}$ 450 pb⁻¹ @ LSF = 0.1, σ = 720 nb \Rightarrow 32M evts Satisfies: Gatti, Spadaro (tracking efficiency)
- 3. All ϕ decays at high stat. for runs off peak:

a) $\sqrt{s} = 1017 \text{ MeV}$: 7.8 pb⁻¹ @ LSF = 2, $\sigma = 1305 \text{ nb} \Rightarrow 20 \text{ M}$ evts

- b) $\sqrt{s} = 1022 \text{ MeV}: 6.1 \text{ pb}^{-1} @ \text{LSF} = 2, \sigma = 1488 \text{ nb} \Rightarrow 19 \text{M} \text{ evts}$
- c) $\sqrt{s} = 1019 \text{ MeV}$: 5.8 pb⁻¹ @ LSF = 1, $\sigma = 3055 \text{ nb} \Rightarrow 18 \text{M}$ evts Satisfies: Bini (15% $\rho \pi$ for Dalitz plot), ϕ cross section analysts

Each program ~7 days elapsed

Reprise: Next steps for MC production

In rough order of suggested priority: to be discussed Execution times are indicative only

- 1. Re-reconstruct 5-10 pb⁻¹ (LSF = 1:5) of all_phys for tests **1** day
- 2. Re-reconstruct all MC samples
- 9 days a) all_phys ppgphok3 (use PHOKHARA-3b and redo generation?) 7 days **b**) 14 days c) neu_kaon 3. New MC production: radiative ϕ decays 7 days 7 days New MC production: $e^+e^-\gamma$, $E_{\gamma} > 100$ MeV 4. New MC production: all_phys off peak 7 days 5. 6. Redo all_phys 20 days 7. Redo neu kaon 30 days

CPU power requirements for 2004

Mass storage requirements

Installed hardware:

5.7 TB recall disk cache (DST)

IBM 3494 tape library

- 12 Magstar 3590 drives (14 MB/s)
- 60 GB/cartridge
- 5200 cassettes, 2 accessors
- Tivoli Storage Manager

Max. capacity: 312 TB In use: 185 TB

Predicted needs for 2004: 2 fb⁻¹ at $L = 1 \times 10^{32}$ cm⁻²s⁻¹

410 TB tape storage 16 TB DST disk cache (50%) Upgrades for 2004

Additional servers for offline farm: ~80 B80 equivalents 10 IBM p630 servers: 4 × 1.45 GHz POWER4+

Additional disk space: ~20 TB for DST cache and AFS cell

Status: Approved by Direttivo, not yet ordered Delivery 30 days after order goes out

Additional IBM 3494 tape library: 300 TB

Magstar 3592 drives: 300 GB/cartridge, 40 MB/s Initially 1000 cartridges with space for 3600 (1080 TB) 2 accessors, 6 drives, remotely accessed via FC/SAN interface

Status: Gara not yet open 6 months or more to delivery (personal estimate)

What if new library unavailable for part or all of 2004?

Status of reconstruction executable

How true is the claim that all DBV > 12 good for analysis? If we re-reconstruct data now, what changes do we pick up?

- **DBV-13** Fixed coordinates of PCA to origin in DTFS banks *Fixed in DST's for DBV-12, does not affect streaming*
 - Magnetic field rescaling Magnet current stable to within < 0.1 A
- **DBV-14** Bug fix for acollinearity cut in FILFO/VLAB 0.1% effect on number of LAB/VLAB evts
 - Bug fix for $K_S \rightarrow \pi^+ \pi^- \pi^0$ tag Affects only one analysis
- **DBV-15** Charged kaon retracking installed *Affects only DST's*
- **DBV-16** Bug in *dE/dx* integration fixed in VTXFIN
 Appears to be most significant change

Status of reconstruction executable

Disclaimers:

- This list assembled quickly, should be done more carefully
- Many small bug fixes (arrays out of bounds, etc.) Shouldn't have an effect on data quality, but who knows?
- Many changes that concern only MC reconstruction First good MC version is DBV-17

Conclusions:

- Most analyses can mix DBV-12 to DBV-15 with impunity
- Probably could mix some data reconstructed with current datarec version (DBV-17) as well

Have to look at dE/dx in DBV-16

DBV-18 will be significantly different (wire sags)

1. FILFO inefficiency is non-negligible and highly variable

2. FILFO cuts were tuned to eliminate as much background as possible from 1999 and 2000 data and have not seriously been looked at since beginning of 2001

FILFO is complicated!

S. Müller

Most $\pi\pi\gamma$ events are rejected by the BHABREJ-condition within FILFO:

EMAX: Cluster with highest energy and Δt (cluster – first cluster) ≤ 3.5 ns and $60^{\circ} < \theta < 120^{\circ}$

FILFO ideas

1. Get rid of it! Alas...

2. New downscale policy

- Like **afl** stream but downscaled fraction normally streamed
- Convenience: vetoed events reconstructed, classified, and present in DST's
- Caveat: these events must be removed from analysis sample, or at least handled differently from standpoint of efficiencies
- Pilot study indicates 1/5 downscale would increase CPU 10% and require FILFO to be enforced in **bha** stream

3. Initial work on FILFO: identify & eliminate most unstable cuts

• Can we get reasonable rejection and high efficiency by eliminating a few cuts?

4. More comprehensive work on FILFO?

S. Müller

Decreases FILFO inefficiency

2001 $\pi^+\pi^-\gamma$ analysis: $1 - \varepsilon_{\text{FILFO}} = 5\%$, decreased to < 1%

Other channels not yet studied, effect expected to be beneficial

Increase in reconstructed volume

Up to 20% for **rad** stream (smallest datarec stream) No effect on **bha** stream (largest datarec stream)

Overall increase in reconstructed volume

~10% for early-2001 runs ~5% for late-2001 and 2002 runs

Overall increase in CPU-time 19% for **early-2001** runs

10-15% for late-2001 and 2002 runs

Significant efficiency gain Increases in CPU and volume probably tolerable

Reconstruction without FILFO

Request from $\pi\pi\gamma$ group: Reprocess 10% of 2002 data without FILFO

Useful to everyone for FILFO efficiency studies

Would allow more comprehensive studies of FILFO itself

Complications:Non-negligible effort/CPU consumptionDiscard bha stream?Define new streams for output files?

Alternative: Implement FILFO downscale and reconstruct (some) data

pros

- More convenient for analysts
- Better coverage of run space
- Reprocessing all 2001-2002 data with streaming modifications frees ~30 TB of library space

cons

- Requires suspension of further work on reconstruction (or inclusion in MC reconstruction)
- Need to reconstruct quite a lot of the data set

We will produce a FILFO-study sample, but need to discuss details

Bhabha streaming proposal

Problem: bha files are:60% of reconstructed output volume30% of data written to tape in 200415% of space in tape library (30 TB)

Very large tape volume for low-interest sample

Proposal:

Decrease E_{tot} cut: $E_{tot} > 250 \text{ MeV}$ (from 300 MeV)

Downscale golden Bhabhas 1:5 at least

Create new tag for radiative Bhabhas for efficiency studies:

- 3 or more clusters with $\cos \theta_{ii} < 0.78$
- -2 < t R/c < 10 ns
- $E_{\rm cl} > 30 {\rm ~MeV}$

Selects about 10% of current Bhabhas

Luminosity-scaling background trigger

LSB trigger automatically provides INSERT events for MC work:

- No time-intensive bggmaker pass
- No worries about background-dependent **bgg** selection efficiencies
- No messy attempts to isolate $\gamma\gamma$ clusters from background clusters

Technically feasible and tested:

- Combine normal trigger and TORTA pulser in freerun mode
- Implement the luminosity scaling by downscaling in software

Example scheme:

- Currently collect **bgg** events with $\sigma \sim 40$ nb: Suppose we want **lsb** $\sigma = 100$ nb, assume $L = 2 \times 10^{32}$ cm⁻² s⁻¹ Need to collect **20 Hz** of truly uncorrelated triggers
- A/C module counts *e.g.* classified VLAB's from ECLS and streams next background event into **lsb** file (w/o reconstruction) every ~4 VLAB's
- Rest of uncorrelated events are discarded
- No uncorrelated events in streams

T3 policy and downscaled sample

Foreword: T3 in 2002 data

- Trigger passes all events, only records cosmic-veto (CV) decision
- CV subject to T3, which decides to keep a certain fraction
- T3 decision determined by both EmC (fast clustering, cosmic-ray TOF) and DC (activity near IR based on clustering of DC hits)
- Overall CV inefficiency much reduced
- Not possible to estimate using single-track methods as in 2001 (EmC + DC decision)
- 1/(S = 64) of CV events retained by T3 for efficiency studies
- Must directly evaluate CV inefficiency using this sample

2004 data: Tune downscale factor for precision analyses

T3 downscale tuning

Precision on $(1 - \varepsilon_{CV})$ at scaledown S: $1 - \varepsilon = \frac{SN_{CV}}{N_{sig}}$ $\delta \varepsilon = \sqrt{\frac{S\varepsilon(1 - \varepsilon)}{N_{sig}}}$ Add For 90% CL with $N_{CV} = 0$ use 2.3 cts.

Added rate = 1800/S Hz Compare to total rate: 2100 Hz

S = 64 add 30 Hz: negligible

S = 8 add 240 Hz = 10% of data

Example 1:Worst case: $1 - \varepsilon$ with T3 = 3.3% $K_S \rightarrow \pi^0 \pi^0$ With S = 64, need 120 pb⁻¹ for 0.1% error in uncorrelated sample K_L crashNB: Target for 2002 analysis is 0.1% overall systematic error

Example 2: $K_S \Rightarrow \pi^+\pi^-; K_L \Rightarrow 3\pi^0: N_{CV} = 0, N_{sig} = 6 \times 10^5, S = 64: 1 - \varepsilon < 0.02\%$ $K_S \Rightarrow \pi^+\pi^-; K_L \Rightarrow \gamma\gamma: N_{CV} = 0, N_{sig} = 1.8 \times 10^4, S = 64: 1 - \varepsilon < 0.8\%$

Example 3: $\sigma_{\text{eff}} = 100 \text{ pb}, \ L = 2 \text{ fb}^{-1}, \ N_{\text{sig}} = 2 \times 10^5$ $K_S \rightarrow \pi^+ \pi^-$ Do not have ε : how efficient do we have to be to know it to 0.05%? $K_L \rightarrow \pi^0 \pi^0$ With $S = 64: \delta \varepsilon = 0.05\%, \ 1-\varepsilon$ must be less than 0.08% Other reconstruction issues for 2004

dE/dx and DCDEDX A/C module:

- Include DCDEDX in datarec path before streaming
- New bank format for DST's

kpm stream:

- Eliminate some old streaming algorithms
- New streaming algorithm using cuts on *p* and *dE/dx* to classify on basis of a single track

ksl stream:

• Definitively eliminate KSTAG algorithm

rad stream:

• Include downscaled sample with less stringent EVCL cuts in stream

ATFMOD:

• Include wire sags in track reconstruction

Any other issues?

First pass at large-scale MC production finished: ~1 year of effort! 700M evts produced, with upgrades, background, MC DST's Continuing effort: new upgrades ready to go Minor problems discovered: growing pains Lots of new production requests to fulfill

Tape storage for 2004 critical, will lead to painful choices CPU situation for 2004 looks good

Work planned for 2004:

Modifications to FILFO, Bhabha streaming, physics streaming T3 scaledown to revisit; new background trigger (**bgg** \rightarrow **lsb**) Other work on reconstruction: wire sags, dE/dx, etc.

Much activity foreseen before data-taking restarts!

Important to discuss priorities:

- Reconstruction w/o FILFO vs. MC production work
- Relative priorities of MC production tasks
- Re-reconstruct or re-generate MC samples?
- Reconstruct sample w/o FILFO or reprocess (some) data?