$\mathbf{R} = \mathbf{K}_{\mathrm{L}} \to \gamma \gamma / \mathbf{K}_{\mathrm{L}} \to \pi^{0} \pi^{0} \pi^{0}$

(a brief report)

G. Lanfranchi - KLOE General Meeting - Dec '02

Major improvements:

•Analyzed statistics : 2001 : 142.6 pb-1 2002 : 169.4 pb-1 2001+2002: 312 pb-1 (3568 runs)

•Massive Monte Carlo production for $KL \rightarrow \gamma\gamma$ background study: 150 pb-1 of $Ks \rightarrow \pi + \pi -$, $KL \rightarrow all$

•Small refinements in the analysis cuts to improve systematic errors

December 19th

The $K \rightarrow \gamma \gamma$ sample:

Efficiencies:

 ϵ (trigger) = (99.6 ± 0.06 stat ± 0.1 syst)%

 ϵ (filter) = (89.5 ± 0.1 stat ± 0.4 syst)% (93.6% acceptance)

 ϵ (selection) = (91.1 ± 0.4 stat ± 0.5 syst)%

 ϵ (total) = (81.1 ± 0.4 stat ± 0.5 syst)%

Selection done with only two and very loose cuts: 1) $|E^*-\mu| < 5 \sigma$ 2) $\alpha < 15^\circ$ Efficiencies estimated from data

Systematics on the selection cuts (I)

 Cut moved from 3 σ → 6 σ
Fit the Mγγ to get the signal content
Evaluate max displacement between the measured efficiencies and the nominal ones.

Systematics on the selection cuts (II)

 Cut moved from 10° 22°
Fit the Mγγ to get the signal content
Evaluate max displacement between the measured efficiency and the nominal one.

Systematics on the background evaluation (I)

Background content in the signal window changed by an amount between ± 16 %. The effect on the signal content is 10 times smaller.

Systematics on the background evaluation (II)

Shape of background studied in the range 280-400 MeV Max difference in the cumulative distributions: 3 % $\delta N\gamma\gamma / N\gamma\gamma$ (bkg) = 0.3 %

Nyy final counting

 ϵ (total) = (81.1 ± 0.4 stat ± 0.5 syst)%

 $N\gamma\gamma = 23584 \pm 236 (1\%) \text{ stat} \pm 212 (0.9\%) \text{ syst}$

$KL \rightarrow \pi^{o}\pi^{o}\pi^{o}$ sample (I)

N $\pi^{\circ}\pi^{\circ}\pi^{\circ}=8429732 \pm 920 \ (0.1\%) \ \text{stat} \pm 16800 \ (0.2\%) \ \text{syst}$

$K_L \rightarrow \pi^o \pi^o \pi^o$ sample (II)

Small refinements:

 cluster threshold moved from 7 MeV → 20 MeV (0.2% lost of events but helps in reducing contamination...)

2) Looser track veto:distance (Kl vertex - first hit) < 50 cm

$K_L \rightarrow \pi^o \pi^o \pi^o$ sample : lifetime

$R = KL \rightarrow \gamma \gamma / KL \rightarrow \pi^{o} \pi^{o} \pi^{o}$

KLOE (02) = $(2.797 \pm 0.028 \text{ stat} \pm 0.025 \text{ syst}) 10^{-3}$ NA48 (02) = $(2.81 \pm 0.01 \text{ stat} \pm 0.03 \text{ syst}) 10^{-3}$ (hep-ex/0210053) PDG(00) = $(2.77 \pm 0.08) 10^{-3}$ (from a fit)

Conclusions

R has been measured at 1% statistical error and 0.9 % systematic error using 312 pb-1 of 2001 and 2002 KLOE data sample .•KLOE note in preparation followed by a paper draft.

• The result confirms the only other existing direct measurement (NA48, october 02) with a comparable accuracy.

• The error on BR(KL $\rightarrow\gamma\gamma$) is anyhow affected by the uncertainty on the BR(KL $\rightarrow\pi^{\circ}\pi^{\circ}\pi^{\circ}) \sim 1.3\%$: PDG(02) = 2.5 % KLOE(0.2) = 1.8 % NA48(02) = 1.5 %

Future Plans

Measurement of KL lifetime using the KL $\rightarrow \pi^{\circ}\pi^{\circ}\pi^{\circ}$ decay seems a short term item:

- statistics is not a problem
- neutral vertex reconstruction efficiency wrt decay path length must be studied.

Direct measurement of BR(KL $\rightarrow\pi^{\circ}\pi^{\circ}\pi^{\circ})$ and of BR(KL $\rightarrow\gamma\gamma$) with an improved accuracy wrt PDG are possible if tag efficiency is known at < 1% level.