f-decays working group report

P.Gauzzi

- Papers in preparation
- Update of published analyses
- New analyses
- Conclusions

Papers in preparation

(C.Bini)

• f @ h @ @ p+p 7g

(C.Di Donato)

Status of the paper " $\mathbf{f} \rightarrow \mathbf{rp}$ " (C.Bini -19/12/2002)

•27/11: Draft 0 (*Phys.Lett. style*) submitted to referees M.Antonelli & L.Passalacqua.
"Study of the decay f → p⁺p⁻p⁰ with the KLOE experiment"

Reactions of the referees:

 \rightarrow refine momentum measurement corrections;

→ improve fit (more free parameters $\Gamma^+ \Gamma^- \Gamma^0$, effect of $\rho(1450)$);

 \rightarrow minor corrections to the text.

•1-10/12: Work done by M.Antonelli (with help of C.Bini): a further DC miscalibration is found affecting M(miss) measurement.

 \rightarrow new correction (p vs θ dependence)

→ systematic at 200 keV level.

•Work in Progress:

 \rightarrow new results after momentum corrections;

 \rightarrow try fit with different set of parameters.

• ~15/1/2003: **Draft 1** (Draft 0 + minor corrections +

"final" numbers) for second round with referees \rightarrow submit to the collaboration.

Summary of results and comparison with KLOE and outer world (results are not "final")

Measured quantity	Result	PDG	KLOE hadr. (G-S fit)
$\mathbf{M}(\mathbf{r}^0)$	775.9 ± 0.6 ± 0.5	771.1 ± 0.9 776.1 (CMD-2)	775.1 ± 0.1
$M(r^0)$ - $M(r^{\pm})$	$-0.5 \pm 0.3 \pm 0.5$	0.4 ± 0.8	-
M(r ⁺)-M(r ⁻)	$0.4 \pm 0.4 \pm 0.5$	-	-
G (r)	$145.2 \pm 1.2 \pm 0.8$	149.2 ± 0.7 144.5 (CMD-2)	147.0 ± 0.8
$BR(\mathbf{f} \rightarrow \mathbf{p}^{+}\mathbf{p}^{-}\mathbf{p}^{0})_{direct}$	$(1.4 \pm 0.2) \times 10^{-3} (*)$	<0.6 x10 ⁻³ 90%CL (SND) <5 x10 ⁻³ 90%CL (CMD2)	-
$s(e^+e^- \rightarrow wp^0, w \rightarrow p^+p^-)$ BR(w → p^0g) / BR(w → p^+p^-)	69 ± 7 pb ^(**) 6.6 ± 0.8	5.1 ± 0.9	-

^(*) Evaluated using BR($\mathbf{f} \rightarrow \mathbf{p}^+ \mathbf{p}^- \mathbf{p}^0$) from PDG

(**) Evaluated using
$$\mathbf{s}(\mathbf{e}^+\mathbf{e}^- \rightarrow \mathbf{p}^+\mathbf{p}^-\mathbf{p}^0)$$
 from KLOE

$$BR(\boldsymbol{j} \to \boldsymbol{p}^{+}\boldsymbol{p}^{-}\boldsymbol{p}^{\circ})_{direct} = \frac{\int |A_{direct}| dX dY}{\int |A_{total}| dX dY} \times BR(\boldsymbol{j} \to \boldsymbol{p}^{+}\boldsymbol{p}^{-}\boldsymbol{p}^{\circ})$$
$$\boldsymbol{s}(e^{+}e^{-} \to \boldsymbol{w}\boldsymbol{p}^{\circ} \to \boldsymbol{p}^{+}\boldsymbol{p}^{-}\boldsymbol{p}^{\circ}) = \frac{\int |A_{wp}| dX dY}{\int |A_{total}| dX dY} \times \boldsymbol{s}(e^{+}e^{-} \to \boldsymbol{p}^{+}\boldsymbol{p}^{-}\boldsymbol{p}^{\circ})$$

C.Di Donato: KLOE Memo no.268 f®h**g** h**@**hp⁺p, h®p⁰p⁰ h**@**hp⁰p⁰, h®p⁺pp⁰

• Status of the paper:

- 10⁷ MC evts. analyzed for **f**®K_SK_L, K_S®**p**⁺**p** and K_L®3**p**⁰, **Þ** no event selected **Þ** upper limit @ 90% CL reduced from 18 to 0.5 events (statistics of year 2000)
- study of systematics in progress
- analysis of 2001 and 2002 data started

f®h@®p⁺p⁻7g

• Comparison:

- 2000: 16.3 pb⁻¹ ₱ 179 evts. ₱ 11.0 ev./pb⁻¹ 2001: 118 pb⁻¹ ₱ 1645 evts. ₱ 13.9 ev./pb⁻¹
- 2002: 223 pb⁻¹ **Þ** 3008 evts. **Þ** 13.4 ev./pb⁻¹

- Schedule:
 - end of February 2003 : update of Memo 268 (2000 data)
 - study of systematics for 2001/2002 (ntuples are ready)

– first draft of paper

Update of previous analyses

• 5 photon final state: $a_0 g f_0 g$ (wp⁰) (P.G.)

• **f**®**h**(**h9g**®**p**⁺**p**⁻**3g** (F.Ambrosino)

$e^+e^-\mathbb{R}wp^0$; $w\mathbb{R}p^0g$

Bckg. for a₀ and f₀
Data-MC discrepancy: process simulated as a sequence of two body decays without any correlation between gand w

 VDM calculation of e⁺e⁻ ® wp⁰ ® p⁰p⁰g (Achasov-Gubin PRD63 (2001) by replacing r with w)

• After weighting the existing MC with the ratio between VDM and "wrong" Eg distributions

$e^+e^ \mathbb{R}wp^0$; $w\mathbb{R}p^0g$

• 2001+2002 data: 86500 events

• M_w = 785.4 MeV (+0.4%) effect of the kinematic fit

Preliminary evaluation: s(e⁺e⁻®wp⁰®p⁰g) = 0.43 nb
 (0.46±0.01±0.03 nb – KLOE Note 178), but full simulation needed

- Same analysis of 2000
- Integr. luminosity: 2000: 16.3 pb⁻¹ 2001: 140 pb⁻¹ 2002: 260 pb⁻¹
- Event numbers
 - 2000: 56 evts./pb⁻¹
 - 2001: 54 evts./pb⁻¹
 - 2002: 53 evts./pb⁻¹

• 2001+2002: 21743 events

- Same analysis of 2000
- Integr. luminosity:
 - 2000:
 16.3 pb⁻¹

 2001:
 140 pb⁻¹
 - 2002: 260 pb⁻¹
- Event numbers: 2000 : 190 evts./pb⁻¹ 2001 : 182 evts./pb⁻¹ 2002 : 183 evts./pb⁻¹
 Þ ~4% less events
- Events 2500 2001+2002 2000 1500 1000 500 200 300 1000 1100 1200 400 800 900 500 M_{pp} (MeV)
- 2001+2002: 73142 events

cosy shape slightly different, but this shape depends on the analysis cuts **Þ** differences in the wp⁰ rejection

a_0/f_0 analysis

- 2001, 2002 data are in reasonable agreement with 2000 ones
- small differences for the f_0 to be understood
- Background subtraction:
- need full wp⁰ simulation(Achasov parametrization in GEANFI)
- need better f ® hg ® p⁰p⁰p⁰g understanding
- After that fit the new spectra:
 - $-a_0$: combined fit of 5g and **p**+**p**5g spectra
 - (with a_0 mass free)
 - $-f_0$: fit to different models **Þ** s(500) ?

f®h(h)g®p+p-gggupdate

(F. Ambrosino LNF Sci.Comm. Nov 26th 2002)

h-h[,] ratio

The selected number of $\eta\gamma$ events scales with luminosity within errors as expected. Events are very clean with background <1%

(F. Ambrosino LNF Sci.Comm. Nov 26th 2002)

New analyses

•h®p⁰gg

(C.Bini – S.Ventura)

(**P.G.**)

$\mathbf{f} \otimes f_0 \otimes \mathbf{g}; f_0 \otimes \mathbf{p}^+ \mathbf{p}$

- **p**⁺**p**⁻**g**final state selected: *f*₀ signal expected in the region between 900 and 1020 MeV; interference with FSR expected
- MC sample used: ppphvlag stream (no f_0 signal)
- Absolute normalization data-MC: s from EVA, L from VLAB

$\mathbf{f} \otimes f_0 \otimes \mathbf{g}; f_0 \otimes \mathbf{p}^+ \mathbf{p}^-$

2002: the whole spectrum seems moved down Þ normalization problem ? can depend on luminosity calculation or efficiency variation from 2001 to 2002

 $\mathbf{f} \otimes f_0 \otimes \mathbf{g}; f_0 \otimes \mathbf{p}^+ \mathbf{p}^-$

- The two spectra are well compatible
- Checks to be done:
 - luminosity
 - photon efficiency
 - tracking efficiency
 - effect of accidentals
 - r parametrization in the MC
- Fit to some model

- For **c**PT it is a unique test of **O**(**p**⁶) terms
- Previous measurements:
- GAMS-2000 (1981): ($p^{c}p^{e}hn$) 6 $10^{5}h$ produced ; 38 evts. Br($h^{e}p^{0}gg$) = (9.5±2.3) 10^{-4}
- GAMS-2000 reanalysis (1984): Br(h®p⁰gg) = (7.1±1.4)¹⁰⁻⁴
- SND (2001): **f**®**hg**; 2.6 ´ 10⁵ **h** produced; 7 signal evts/170 found
- $Br(? \rightarrow p^{0}??) = (2.1^{+3.8}_{-1.9}) \times 10^{-4} \text{ } \text{P} Br(h \otimes p^{0}gg) < 8.4 \text{ } 10^{-4} \otimes 90\% \text{ C.L.}$
 - Crystal Ball (preliminary-2001) : 2 ~ 10⁷ h produced
 - ~ 500 evts. found $Br(h \otimes p^0 gg) = (3.2 \pm 0.9)^{-1} 10^{-4}$
- KLOE: with 2001 + 2002 statistics **P** ~ 2 ⁻ 10⁷ **h** produced (same as Crystal Ball)
- First look at ~ 400 pb⁻¹ of the 2001-2002 data \clubsuit ~ 1.7 \checkmark 107 h
 - same program for the 5g final state
 - kinematic fit for f ® hg ® p⁰ggghypothesis added

After **p⁰p⁰g**and **hp⁰g** rejection:

- (1) Signal (MC)
- (2) Residual $p^0 p^0 g(MC)$
- (3) hg® p⁰p⁰p⁰g(MC)
 (4) Data

Cutting the p⁰ peak does not help with (3) f®hg®p⁰p⁰p⁰g ↓ gg ↓ gg

b only one **p**⁰ is reconstructed

f®hg®p⁰ggg

- After cut on the p⁰ peak: 3900 events selected (e » 15 %) S/B » 0.3 -- 0.5
- Background: f ® hg ® p⁰p⁰p⁰g
 1) with photons lost Þ asymmetric total energy
- 2) with merged clusters

Still no clear signal of h®p⁰gg
 It is crucial to improve f®hg®p⁰p⁰p⁰grejection both
 using QCAL (glost) and shower shape variables (merging)

Other studies in progress

- **h**®**p**⁺**p·p**⁰ (T.Capussela, F.Perfetto)
- h®ggg (B.Di Micco)
- $\mathbf{f} \otimes \mathbf{h} \otimes \mathbf{p}^{\dagger} \otimes \mathbf{p}^{\bullet} \otimes \mathbf{p}^{\bullet} \otimes \mathbf{p}$

Conclusions

Papers: -- "rp" almost completed

 -- f®h@®p+p7g analysis of 2001/2002 data in progress

- Next WG meeting (end of January): review of the 2001/2002 results to decide on possible presentation to EURIDICE meeting (6-7/2/2003) and to winter conferences
 - $-a_0/f_0$ neutral and charged final states (with fits ?)
 - h/h¢update
 - Slope of Dalitz plot of $\mathbf{h} \otimes \mathbf{p}^+ \mathbf{p}^- \mathbf{p}^0$