$\Gamma(K_S \rightarrow \pi e \nu)$ measurement update

Tommaso Spadaro*

Università di Roma "La Sapienza"

* for the semileptonic cell

KLOE General Meeting September 25th, 2001

- Event selection
- Efficiencies estimates
- Kinematic preselection
- Extrapolation, TCA, Trigger, T0
- Tag bias due to the T0
- Conclusions and outlook

Event selection

Analysis overview: final selection

• The kinematics is closed with the K_S momentum estimated using: the direction of the K_{crash} cluster, the ϕ boost and \sqrt{s} .

$$E\left(missing\right)_{\pi e} = E_S - E\left(\pi \text{ hyp.}\right)_1 - E\left(\text{e hyp.}\right)_2$$

Analysis overview: final selection

- Observed events per $\mathsf{p}\mathsf{b}^{-1}$

Period	Luminosity	Nobs	Nobs/pb
July-August $15/7 \rightarrow 5/8$	3.53 pb^{-1}	113 ± 11	32.1 ± 3.1
October-November $30/10 \rightarrow 15/11$	$6.15 \ { m pb}^{-1}$	242 ± 18	39.3 ± 2.9
November $15/11 \rightarrow 24/11$	3.90 pb^{-1}	132 ± 13	33.8 ± 3.4
November-December $24/11 \rightarrow 6/12$	3.92 pb^{-1}	150 ± 14	38.3 ± 3.5
Year 2000 Summary $15/7 \rightarrow 6/12$	17.5 pb^{-1}	627 ± 31	35.8 ± 1.7

• Efficiencies needed in order to measure the ratio of the branching ratios $\frac{B(K_S \rightarrow K_{e3})}{B(K_S \rightarrow \pi^+ \pi^-)}$, (at the % level):

 $\frac{\langle \epsilon \, (\text{2 trks, 1 vtx IP, InvMass}) \rangle \times \epsilon \, (\text{2 Extrap} \bullet \text{2 TCA} \bullet \text{TO} \bullet \text{TRG}) \times \epsilon \, (\text{Tof cut})}{\langle \epsilon \, (\text{2 trks from IP to the EmC}) \rangle \times \epsilon \, (\text{TO} \bullet \text{TRG})} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi^+ \pi^-))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi^+ \pi^-))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi^+ \pi^-))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi^+ \pi^-))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}{\epsilon \, (\text{tag}(\pi e \nu))} \times \frac{\epsilon \, (\text{tag}(\pi e \nu))}$

Channel	Subject to be studied	
$K_S \to \pi^+ \pi^ K_L \to K_{e3}$ near IP	TRG, T0 and TCA, VTX (?), tag-bias	
$K_S \to \pi^+ \pi^- \qquad K_L \to K_{crash}$	TRK and TCA efficiency for π , tag-bias	
$K_S \to \pi^0 \pi^0$ $K_L \to K_{e3}$ near IP	VTX	
$\phi \to \pi^+ \pi^- \pi^0$	TCA efficiency for π	
$e^+e^-\gamma$ with low p_t electrons	TRK efficiency for e^{\pm}	

- Tracking efficiencies has been preliminary studied on $K_S \rightarrow \pi^+ \pi^-$
- The low- P_t -region is not entirely covered by $K_S \rightarrow \pi^+ \pi^-$
- Radiative-Bhabha events could be used to cover the low- P_t range.
- By now the efficiency is taken directly from Monte Carlo without any correction: $\epsilon=62.4\pm0.3\%$

- Vertex efficiency is under study on the $K_S \rightarrow \pi^0 \pi^0 K_L \rightarrow \pi e \nu$ (before DC wall) control sample
- Selection is done using tof identification and PCA of the tracks to the origin
- The vertex efficiency data vs. Monte Carlo has also to be estimated in $K_S \rightarrow \pi^+ \pi^-$ events, as function of the run period
- Both works are in progress

Method	Acceptance	Category	2TCA	Т0	$S \ge 1$
1	-	95.6 ± 0.3	$92.0 \pm 0.4 \pm 0.37$	$99.83 \pm 0.07 \pm ??$	$87.8 \pm 0.5 \pm ??$
2	51.1 ± 0.02	95.9 ± 0.1	$93.1 \pm 0.2 \pm 0.3$	99.6 ± 0.1	87.1 ± 0.44
Method	trig	2TCA+T0+	-TRIG		
1	92.65 ± 0.5	85.1 ± 0).5		
2	92.3 ± 0.5	85.6 ± 0).5		

ToF efficiency

• $D\delta t$ distributions in $K_L \rightarrow \pi e\nu$ decays before the DC wall, are compared with MC ones, passing semileptonic stream, K_{crash} and trigger.

The final result for the TOF efficiency is:

 $\varepsilon_{TOF}(data) = (82.0 \pm 0.007)\%$; $\varepsilon_{TOF}(MC) = (83.5 \pm 0.004)\%$

News - Tag bias

- Ratio of K_{crash} efficiencies has (almost) been estimated
- T_0 bunch populations (affecting β^*), have been estimated for semileptonic and $\pi^+\pi^-$ decays.
- T_0 distribution obtained for $\pi e \nu$ decays using the $K_S \rightarrow \pi^+ \pi^-$, $K_L \rightarrow \pi e \nu$
- K_L time of flight and clusters topology is offline corrected to reproduce the signal

News - Tag bias

- $K_S \rightarrow \pi^+ \pi^-$ T0 distribution obtained using K_S -tagging through $K_L \rightarrow \pi^+ \pi^- \pi^0$ identification, T0-TRG unbiased
- Global T0 rephased using K_L photons and K_L vertex direction is always correct at the 3×10^{-3} level (checked using accompanying $K_S \rightarrow \pi^0 \pi^0$)

News - Tag bias

• Final correction estimated using correct-T0 events ($\pi^+\pi^-$ -rephased):

$$R_{\text{tag}}^{\pm/\text{ke3}} = \frac{\sum_{m} p_m^{\pm} \times N_m}{\sum_{n} p_n^{ke3} \times N_n}$$

• The final result for the tag bias is obtained:

$$\frac{\varepsilon_{tag}(K_S \to \pi^+ \pi^-)}{\varepsilon_{tag}(K_S \to \pi e\nu)} = (97.7 \pm 0.4_{\text{stat}} \pm 0.5_{\text{syst}}) \%$$

- Statistical error takes into account correlations between the N_n 's and statistical error on the p_n 's
- Systematic error takes into account the presence of pion fragments in $K_S \rightarrow \pi^+ \pi^-$ events (Talk by P. Valente)

Efficiencies results

Preselection	$62.4 \pm 0.3_{\rm stat} \pm ??$
Acceptance	$51.1 \pm 0.2_{\mathrm{stat}}$
Category	$95.8 \pm 0.1_{\rm stat} \pm 0.3_{\rm syst}$
2TCA•T0•TRG	$85.3\pm0.4_{\rm stat}\pm0.5_{\rm syst}$
TOF	$82.0 \pm 0.7_{\rm stat} \pm ??$

Efficiency $21.4 \pm 0.2_{\text{stat}} \pm 0.2_{\text{syst}}$

Tag ratio	$97.7\pm0.4_{\rm stat}\pm0.5_{\rm syst}$
-----------	--

- Preliminary estimate of the total selection efficiency (K_{crash} excluded) gives $\epsilon = 0.219 \pm 0.003$.
- Normalizing to the $K_S \rightarrow \pi^+\pi^-$ events in the Summer period, one gets $BR = (6.7 \pm 0.3) \times 10^{-4}$ (5% relative error, dominated by the statistics)

Overlook

- Track-vertex efficiency still to be addressed: corrections are expected to be at the level of some percent
- In the forthcoming memo all other systematics estimated
- The perspectives on this measurement include the possibility to test the $\Delta S=\Delta Q$ rule, in a CPT-conserving framework
- The same level of statistical precision of CPLEAR ($\Re x = 6 \times 10^{-3}$) can be achieved with a measurement with a relative accuracy (better) of 2.3%
- This correspond to a sample of $\sim 60 \text{ pb}^{-1}$, with present selection efficiency
- Work on the systematic side could be improved...
- Maybe, release the vertex cut in preselection phase?