γγ -> π⁰π⁰ production with e⁺ e⁻ colliding beams @ √s=1 GeV

Frascati, 2/9th/2010

ISSUES:

- Systematic study of efficiency from MC
 Correction of scale energy (Data-MC comparison)
- •Measure of $K_s K_L$ cross section

ISSUES:

- Systematic study of efficiency from MC
- Correction of scale energy (Data-MC comparison)
 LSB
- •Measure of $K_s K_L$ cross section
- •Fit to data!

Monte Carlo simulation

• Generation of $e^+e^- \rightarrow e^+e^- \sigma \rightarrow e^+e^-\pi^0\pi^0$ events using:

 M_{σ} =541 MeV, Γ_{σ} =504 MeV (*BES2*) # 50000

- M_{σ} =513 MeV, Γ_{σ} =335 MeV (*CLEO*) # 40000
- M_{σ} =478 MeV, Γ_{σ} =324 MeV (*E791*) # 40000
- e⁺ and e⁻ in the cone $10^{\circ} < 9 > 170^{\circ}$
- GEANFI simulation of the detector response

Chosen because of wider m_{4v} interval We use official ALLPHYS MC production for main background processes:

- $e^+e^- \rightarrow KsKl$
- $e^+e^- \rightarrow \eta\gamma \rightarrow 3\pi^0\gamma$
- $e^+e^- \rightarrow \omega \pi^0$
- $e^+e^- \rightarrow f_0 \gamma$
- $e^+e^- \rightarrow a_0 \gamma$
- $e^+e^- \rightarrow \gamma\gamma$

Resolution function: fit result

Preselection filters

- Trigger
- Bkg rejection filter FILFO
- $\gamma \gamma$ filter asking for:

at least 2 prompt neutral clusters
All clusters with E>15 MeV and 20°<9<160°
at least one cluster with E>50 MeV
R=(E₁+ E₂)/E_{tot}>0.3
100<E_{tot}<900 MeV

Filters (trg-FILFO-yyfilter) efficiencies

4γ reconstruction

What we do:

- ask at least 4 neutral prompt clusters, with E≥15 MeV and 20° < 9 > 160°
- perform recover splitting
- choose and pair 4 γ minimizing

$$\chi^2_{\pi^0\pi^0} = \frac{(m_{\pi^0} - m_{\gamma 1\gamma 2})^2}{\sigma^2_{\gamma 1\gamma 2}} + \frac{(m_{\pi^0} - m_{\gamma 3\gamma 4})^2}{\sigma^2_{\gamma 3\gamma 4}}$$

Switching from $m_{2\pi}^{sm}$ to $m_{4\gamma}$ Slice with $m_{4\gamma} = f(m_{2\pi}^{sm})$ $m_{4\gamma} vs m_{2\pi}^{sm}$ gaussain fit 1000 ∃ 1000 2.353 2.167 1.660 550 900 χ²/ndf P1 P2 P3 500 800 33 41.01 383.0 -24.21 ± 5.096 0.297/E+12 ± 0.1472E+11 0.9946 ± 0.1154E-01 700 450 X²∕n Cons Mear Sigm 1 600 400 500 350 400 300 250 300 350 400 450 500 550 600 300 C≅1,B<<1 200 <u>200</u> 300 400 600 700 800 900 1000 500 ñ 20 10 50 40 30 Almost $m_{4\nu} vs m_{2\pi}^{0}$ $m_{2\pi}^{0}$ linear $f(x) = A + \frac{B}{x^4} + Cx$ Fit function: Effects due to low energy wrongly 12 reconstructed γ

Total preselection efficiency

Analysis cuts

We require:

- χ²_{ππ}< 4
- 4 and only 4 neutral prompt clusters
- no tracks in the Drift Chamber
- $R=\Sigma_{\gamma} E_{\gamma} / E_{tot} > 0.8$
- $E_{\gamma 3} + E_{\gamma 4} > 60 \text{ MeV}$
- $E_{\gamma 1} < 450 \text{ MeV \& } E_{\gamma 2} < 400 \text{ MeV}$
- $\Sigma_{\gamma} p_T < 80 \text{ MeV}$

MC signal and bkg reduction factors

	$e^+e^-\sigma$	$K_S K_L$	$\eta \to 3\pi^0$	$f_0\gamma$	$a_0\gamma$	$\omega\pi^0$	$\gamma\gamma$
MC	26844	19887800	6423710	131849	97205	933541	80601500
trigger	0.835						
FILFO	0.870						
filtro $\gamma\gamma$	0.984						
$\geq 4\gamma$	0.688						
preselection	0.491	0.160	0.273	0.160	0.237	0.189	2×10^{-4}
$\chi^2_{pair} < 4$	0.853	0.841	0.875	0.466	0.654	0.432	0.133
only 4γ	0.985	0.951	0.074	0.736	0.340	0.675	0.872
no tracks	0.955	0.280	0.833	0.881	0.843	0.865	0.632
R > 0.8	0.940	0.196	0.157	0.805	0.355	0.722	0.737
$E_{\gamma 3\gamma 4}$	0.979	0.972	0.979	0.962	0.982	0.971	0.329
$\sum p_T < 80 \text{ MeV}$	0.911	0.843	0.185	0.535	0.344	0.490	0.561
$E_{\gamma 1 \gamma 2}$	0.998	0.999	0.999	0.973	0.988	0.952	0.625
tot cuts	0.698	3.31×10^{-2}	6.57×10^{-3}	0.165	0.019	0.086	0.010
efficiency	0.344	5.6×10^{-3}	1.8×10^{-3}	0.026	4.5×10^{-3}	1.55×10^{-2}	1.9×10^{-6}
efficiency	0.344	5.6×10^{-3}	1.8×10^{-3}	0.026	4.5×10^{-3}	1.55×10^{-2}	1.9×10^{-6}

Data reduction factors

radiative stream	3.767×10^8	
$\gamma\gamma$ filter & ≥ 4 prompt	3.257×10^{6}	
recover splitting	1888628	
$\chi^2_{pair} < 4$	898356	0.476
only 4γ	1728217	0.915
no tracks	425079	0.225
R > 0.8	643975	0.341
$E_{\gamma 3\gamma 4}$	1346737	0.713
$E_{\gamma 1 \gamma 2}$	1694786	0.897
$\sum p_T < 80 \text{ MeV}$	466917	0.247
tot cuts	10188	5.39×10^{-3}

Data collected @ vs=1 GeV 17/12/2005 – 16/3/2006 $(\mathcal{L} = 239.6 \text{ pb}^{-1})$

50000 Entries 1888628 Mean 447.2 RMS 162.0 40000 ALLCHAN 0.1550E+07 30000 20000 10000 300 400 500 600 700 800 900 1000 $\boldsymbol{m}_{4\gamma}$ Entries 10188 Mean 551.8 300 RMS 180.5 ALLCHAN 0.1019E+05 250 200 150 100 50 600 700 300 400 500 800 900 1000 After cuts $m_{4\gamma}$

Before cuts

Study of the energy scale: K_S mass peak

 $\beta_{delayed}$ distribution for data and MC

Analysis cuts: •X² pair < 4 •350 <m_{4v} < 650 MeV •# prompt = 4 •no tracks •1 & only 1 delayed cluster •E_{delayed} > 15 (30) (60) MeV •0.06 < $\beta_{delayed}$ < 0.13 E_{delayed} > 15 MeV E_{delayed} > 30 MeV E_{delayed} > 60 MeV

K_S mass peak: before the cure

 K_s mass peak: after the cure

on MC only: for all prompt neutral clusters E = 1.008*Eclu

π^0 mass peak: after the cure

on MC only: for all prompt neutral clusters E = 1.008*Eclu KsKl cross section @ √s=1 GeV

 $\beta_{delayed}$ distribution for data and MC

Analysis cuts: •X² pair < 4 •350 <m_{4v} < 650 MeV •# prompt = 4 •no tracks •1 & only 1 delayed cluster •E_{delayed} > 15 (30) (60) MeV •0.06 < $\beta_{delayed}$ < 0.13 E_{delayed} > 15 MeV E_{delayed} > 30 MeV E_{delayed} > 60 MeV The stronger the cut, the narrower the peak

KsKl cross section @ √s=1 GeV

 m_{4v} distribution for data and MC

Analysis cuts: •X² pair < 4 •350 <m_{4v} < 650 MeV •# prompt = 4 •no tracks •1 & only 1 delayed cluster •E_{delayed} > 15 (30) (60) MeV •0.06 < $\beta_{delayed}$ < 0.13 E_{delayed} > 15 MeV

E_{delayed} > 30 MeV

E_{delayed} > 60 MeV

Unfortunately the cut $E_{delayed} > 15$ (30) (60) MeV is not really safe...

Data and MC are not in so good agreement

Waiting for better solution we adopt the weaker cut, namely E_{delayed} > 15

Ideas about the fit

Fit the data spectrum with:

- normalized background distributions weighted by their efficiencies
- a signal distribution generated according to

$$\frac{d\sigma_{\pi\pi}}{dw} = \left[16\pi\Gamma_{\gamma\gamma}\frac{\Gamma_{\pi\pi}}{\Gamma}\left(\frac{2\alpha}{\pi}\ln\frac{E}{m_e}\right)^2\right] \times$$
$$\frac{1}{w^3}\left[\left(2+\frac{w^2}{4E^2}\right)^2\ln\frac{2E}{w} - \left(1-\frac{w^2}{4E^2}\right)\left(3+\frac{w^2}{4E^2}\right)\right]\frac{M^2\Gamma(w)}{(w^2-M^2)^2 + M^2\Gamma^2(w)}$$

wich has to be convoluted with the resolution function end wieghted by the efficiency

$$\frac{d\sigma_{\pi\pi}}{dw} = \frac{16\pi}{w^2} \frac{M^2 \Gamma_{\gamma\gamma} \Gamma(w)}{(w^2 - M^2)^2 + M^2 \Gamma^2(w)} \times$$

$$\left(\frac{2\alpha}{\pi}\ln\frac{E}{m_e}\right)^2 \frac{1}{w} \left[\left(2 + \frac{w^2}{4E^2}\right)^2 \ln\frac{2E}{w} - \left(1 - \frac{w^2}{4E^2}\right) \left(3 + \frac{w^2}{4E^2}\right) \right]$$

Low function

$$\frac{d\sigma_{\pi\pi}}{dw} = \frac{16\pi}{w^2} \frac{M^2 \Gamma_{\gamma\gamma} \Gamma(w)}{(w^2 - M^2)^2 + M^2 \Gamma^2(w)} \times \xrightarrow{\text{Relativistic}} \mathbb{BW}$$
$$\left(\left(\frac{2\alpha}{\pi} \ln \frac{E}{m_e}\right)^2 \frac{1}{w} \left[\left(2 + \frac{w^2}{4E^2}\right)^2 \ln \frac{2E}{w} - \left(1 - \frac{w^2}{4E^2}\right) \left(3 + \frac{w^2}{4E^2}\right) \right]$$

Low function

and, for a broad resonance,

$$\Gamma(w) = \Gamma \frac{M}{w} \frac{p*}{p*_0} = \Gamma_0 \sqrt{\frac{1 - 4m_\pi^2/w^2}{1 - 4m_\pi^2/M^2}}$$

Conclusions

- Efficiency from MC signal has been studied: it is almost flat in $\rm m_{4y}$ and it results

$$\int \varepsilon(m_{_{4\gamma}}) dm_{_{4\gamma}} \cong 0.344$$

- Cuts have been varied in order to optimize $\epsilon_{signal}/\epsilon_{bkg}$
- MC energy scale has been adjusted @ Ks peak

Conclusions and what we have to do

- adjust energy scale @ ω
- verify that cuts efficiencies are generator-indipendent
- determine KsKl cross section (taking in acconunt radiative correction in the SND data fit?)
- PERFORM FIT TO DATA!

Checks on accidental clusters, fake triggers...

there is the concern to look at low mass values, without closing the kinematics \rightarrow dedicated care of background clusters? Done!

thanks to discussions with M. Moulson and S. Giovannella, we selected a "clean sample of garbage" → events with LSB clusters able to provide the trigger, and applied the selection on these accidental clusters

from 8.1×10^7 events, only 1.9×10^5 (~ 0.23%) are triggered by accidental clusters, how many survive analysis cuts?

Federico N., General Meeting November 9, 2009

Checks on accidental clusters, fake triggers...

