Search for $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$

Samples

- **1.** DATA: 239.6 pb⁻¹ from 2006, Off-Peak
- **2.** ALL_PHYS Monte Carlo K_SK_L: 19 887 800 events
- **3.** ALLRAD Monte Carlo $\eta \rightarrow 3\pi^0$: 6 423 710 events
- **4.** OMEGA_PI Monte Carlo $e^+e^- \rightarrow \omega \pi^0$: 933 540 events
- **5.** ALLRAD Monte Carlo $f_0 \rightarrow 2\pi^0$: 131 849 events
- **6.** ALLRAD Monte Carlo $a_0 \rightarrow \eta \pi^0$: 97 205 events
- 7. GG04 Monte Carlo $e^+e^- \rightarrow 2\gamma$: 81 601 500 events

All these must fulfill the GGfilter - D.Capriotti, F.N. & G.Venanzoni KLOE Memo 346

- at least 2 prompt neutral clusters with energy > 15 MeV, acceptance 20° -160°
- the most energetic neutral prompt cluster with energy > 50 MeV
- total calorimetric energy 200MeV < E_{calo} < 900MeV
- R = (ΣE_{prompt}) / E_{calo} > 0.3

Cross section of background processes

Signal simulation

Signal efficiencies

	CLEO σ events	efficiency (%)
generated	40000	
TRIGGER	35241	88
FILFO	36873	92
TRG∩FLF	32114	80

 $\frac{N(ggfilter | TRG \cap FLF)}{N(TRG \cap FLF)} = 91.7\%$

 $\Delta R/cm$

AT vs. AR

Identification of the π^0 signal

after recover splitting, the candidate 4 photons are obtained by minimizing

$$\frac{\sigma_E}{E} \sim \frac{0.06}{\sqrt{E(GeV)}}$$

$$\chi_{pair}^{2} = \left(\frac{M_{ij} - m_{\pi 0}}{\sigma(E_{i}, E_{j})}\right)^{2} + \left(\frac{M_{lk} - m_{\pi 0}}{\sigma(E_{l}, E_{k})}\right)^{2}$$
$$\frac{\sigma(E_{i}, E_{j})}{M_{ij}} = \frac{1}{2} \left(\frac{\sigma_{E_{i}}}{E_{i}} \oplus \frac{\sigma_{E_{j}}}{E_{j}}\right)$$
$$M_{ij}^{2} = 2E_{i}E_{j}(1 - \cos\theta_{ij})$$

Choice of the cuts

 $\sum_{2\min}$: sum of the energies of the two least energetic clusters

Choice of the cuts

Choice of the cuts

Analysis cuts efficiency

4 prompt neutral clusters $\chi^2 < 4$ R > 0.8 $\sum_{2min} > 60 \text{ MeV}$ $p_T < 80 \text{ MeV}$ no tracks

the strategy is to subtract background events and to fit the resulting spectrum with an analytical function, folded with efficiency corrections and resolution function, NOT to fit anymore with σ inside to be "blind" with respect to σ details

Background shapes

4 prompt neutral clusters $\chi^2 < 4$ R > 0.8 $\sum_{2min} > 60 \text{ MeV}$ $p_T < 80 \text{ MeV}$ no tracks

Background (and signal) shapes

4 prompt neutral clusters $\chi^2 < 4$ R > 0.8 $\sum_{2min} > 60 \text{ MeV}$ $p_T < 80 \text{ MeV}$ no tracks

Check of η -> $3\pi^0$

	Weight	Error
$e^+e^- ightarrow \eta\gamma ightarrow \pi^0\pi^0\pi^0\gamma$	0.833	0.075
$e^+e^- \to K_S K_L$	0.113	0.041
$e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$	0.053	0.036

only 6 prompt neutral clusters

$$\chi^2 = 69/97$$
 from fit

M4γ distribution (sum of

M4 γ distribution (K_SK_L, $\eta \rightarrow 3\pi^0$, $\omega\pi^0$)

 $\sigma(e^+e^- \rightarrow \phi \rightarrow \eta \gamma \rightarrow \pi^0 \pi^0 \pi^0 \gamma) = 338 \pm 33 \text{ pb at } 1 \text{ GeV}$

consistent with SND measurement

Analysis with "soft" recover and γ @ 20°

	N_{MC}	N^0_{MC}	ε	σ (nb)	$n=\epsilon L\sigma$	n/10188
$K_S K_L$	111 319	19 887 800	$5.6 imes10^{-3}$	2.0	2682	0.26 ightarrow 0.197
$\eta \to 3\pi^0$	11 520	$6\ 423\ 710$	1.79×10^{-3}	0.33	142	0.014
$\omega \pi^0$	14 485	933 541	1.55×10^{-2}	0.55	2045	0.2
$f_0 ightarrow 2\pi^0$	3 407	131 894	2.58×10^{-2}	0.17	1052	0.10 ightarrow 0.124
$a_0 \to \eta \pi^0$	442	97 205	4.55×10^{-3}	0.11	120	$0.012 \rightarrow 0.0144$
$e^+e^- \to \gamma\gamma$	155	80 601 500	1.92×10^{-5}	360	166	0.016 ightarrow 0.033

Analysis with "soft" recover and γ @ 20°

Analysis with "soft" recover and γ @ 23°

	N_{MC}	N^0_{MC}	έ	σ (nb)	$n=\epsilon L\sigma$	n/7924
$K_S K_L$	104 118	19 887 800	5.24×10^{-3}	2.0	2509	$0.317 \rightarrow 0.238$
$\eta \to 3\pi^0$	12 386	$6\ 423\ 710$	1.93×10^{-3}	0.33	153	0.019
$\omega \pi^0$	$13 \ 132$	933 541	1.41×10^{-2}	0.55	1854	0.234
$f_0 \rightarrow 2\pi^0$	3 136	131 894	2.38×10^{-2}	0.17	969	0.122
$a_0 \rightarrow \eta \pi^0$	410	97 205	4.22×10^{-3}	0.11	111	0.014
$e^+e^- \to \gamma\gamma$	84	80 601 500	1.04×10^{-5}	360	82	0.01

Analysis with "soft" recover and $\gamma @ 23^{\circ}$

Comparison 20° vs. 23°

- the ratio between KSKL peak and signal bump remains the same
- region around 800 MeV ($\omega\pi$ 0 and f0) is apparently unaffected

Analysis with "hard" recover and γ @ 20°

	N_{MC}	N_{MC}^0	ϵ	σ (nb)	$n = \epsilon L \sigma$	n/10768
$K_S K_L$	110 955	19 887 800	5.58×10^{-3}	2.0	2673	0.248
$\eta \to 3\pi^0$	9 960	$6\ 423\ 710$	1.55×10^{-3}	0.33	123	0.0114
$\omega \pi^0$	14 290	$933\ 541$	1.53×10^{-2}	0.55	2017	0.187
$f_0 \rightarrow 2\pi^0$	3 365	131 894	2.55×10^{-2}	0.17	1039	0.097
$a_0 ightarrow \eta \pi^0$	440	97 205	4.53×10^{-3}	0.11	119	0.011
$e^+e^- \to \gamma\gamma$	164	80 601 500	2.03×10^{-5}	360	176	0.016

- 6% difference in the # of events between "soft" and "hard"
- eta -> 3p0 reduces by ~ 20%

Analysis with "hard" recover and γ @ 20°

Where we are

- the structure where $\gamma\gamma \rightarrow \pi 0\pi 0$ events are expected is confirmed with 20 times the statistics analyzed in the past
- some bumps are not yet explained, but for the region ~ 550-600 MeV, we are processing right now eta -> gg events that have been neglected in the past, but that can play a role with increased accuracy

• perhaps some analysis cuts may be loosened

Conclusions

- the bump is confirmed, with increasing statistics (20 times) you unavoidably get sensitive to effects obscured by statistical fluctuations
- some systematic checks addressed (splitting and γ polar angle)
- we are writing documentation and we wish to undergo the usual refereeing procedure