Updates on the π / μ analysis for pion formfactor

Peter A. Lukin, Graziano Venanzoni Budker Institute for Nuclear Physics Laboratori Nazionali di Frascati

Outline

\checkmark Introduction
Background subtraction
\square Bhabha spectrum shape from Experimental Data sample (Background I)
\square Bhabha spectrum shape from MC Simulation Data sample (Background II)
Data/MC comparision in different Q2 slices
Simulation crosschecks
Conclusion

Introduction

Goal: To measure charged pion formfactor using $N \pi \pi /$ /Nu μ ratio Subtask: To perform coparision of DATA/MC for $\mu^{+} \mu^{-} \gamma$ events

DATA and MC samples, used in the work:
\checkmark Experimental Data Runs 23542-27079, Luminosity Integral is $241.38 \mathrm{pb}^{-1}$
\checkmark тाty MC Simulation Runs 23587-27079, Phokhara Generator, Luminosity Integral is $240.19 \mathrm{pb}^{-1}(\times 6)$
$\checkmark \mu \mu \gamma$ MC Simulation Runs 23546-27079, Phokhara Generator, Luminosity Integral is $240.64 \mathrm{pb}^{-1}(\times 6)$
\checkmark eer MC Simulation Runs 23546-27079, Phokhara Generator, Luminosity Integral is $236.57 \mathrm{pb}^{-1}(\times 6)$

LikelyHood Cut Definition Legend: "+" - LogRL >0, "_" - LogRL < 0

LikelyHood Cut	First track	Second Track
OR	+	+
	+	-
XOR	+	+
NOR	-	+

LikelyHood Cut Definition (Cont.d)

OR LikelyHood is used in DATA analysis NOR LikelyHood is used to determine Bhabha spectrum shape XOR LikelyHood is used to determine scale factor for NOR Bhabha spectrum

$$
\log R L>0 \Rightarrow \pi, \mu \log R L<0 \Rightarrow e
$$

$$
I . \varepsilon_{e}^{1}=\varepsilon(\operatorname{LogRL}<0) \approx 98.5 \% \Rightarrow \rho=1-\varepsilon_{e}^{1} \approx 1.5 \% \Rightarrow \text { NOR } \Leftrightarrow \text { pure } e^{+} e^{-}
$$

$$
I I . W_{e e}^{O R}=W_{e e}^{X O R}+W_{e e}^{A N D}=W_{e e}^{X O R} \cdot\left(1+\frac{W_{e e}^{A N D}}{W_{e e}^{X O R}}\right)=W_{e e}^{X O R} \cdot\left(1+\frac{\rho}{2 \cdot \varepsilon_{e}^{1}}\right)=W_{e e}^{X O R} \cdot(1+0.008)
$$

$$
W_{e e}^{O R} \cong W_{e e}^{X O R}
$$

The shape eeg (NOR) is consistent with eeg (OR)

Trackmass

Background subtraction I (scale factor)

$$
F_{D A T A}^{X O R}(M)=W_{e e \gamma}^{X O R} \cdot f_{D A T A}^{N O R}(M)+W_{\pi \pi \gamma}^{X O R} \cdot f_{M C \pi \pi \gamma}^{X O R}(M)+W_{\mu \mu \gamma}^{X O R} \cdot f_{M C \mu \mu \gamma}^{\mathrm{XOR}}(M)
$$

ee γ is green $\pi \pi \gamma$ is blue $\mu \mu \gamma$ is red
Fitting function is magenta

Background subtraction I (Fit)

$$
F_{D A T A}^{O R}(M)=W_{e e \gamma}^{X O R} \cdot f_{D A T A}^{N O R}(M)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}(M)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{\mathrm{OR}}(M)
$$

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction I (Results)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA,
Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 1)

$F_{D A T A}^{O R}(M)=W_{\text {ee }}^{O R} \cdot f_{M C \text { eer }}^{O R}(M)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}(M)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}(M)$ Wee is fixed according to luminosity. Wuu, W $W \pi$ are free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 1)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA,
Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 2)

$F_{D A T A}^{O R}(M)=W_{\text {eeो }}^{O R} \cdot f_{M C e e \gamma}^{O R}(M)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}(M)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}(M)$ Wee, $W \pi \pi$ are fixed according to luminosity. Wu μ is free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 2)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 3)

$F_{D A T A}^{O R}(M)=W_{\text {eeץ }}^{O R} \cdot f_{M C e e \gamma}^{O R}(M)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}(M)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}(M)$ $\mathrm{W} \pi \pi$ is fixed according to luminosity. Wum, Wee are free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 3)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA,
Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Positive muon polar angle

INFN
istituto Nazionale dil Fisica Nucleare

Background subtraction I (Fit)

$$
F_{D A T A}^{O R}\left(\theta^{+}\right)=W_{e e \gamma}^{X O R} \cdot f_{D A T A}^{N O R}\left(\theta^{+}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{+}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{\mathrm{OR}}\left(\theta^{+}\right)
$$

Wee, $W \pi \pi$ are fixed from trackmass, $W \mu \mu$ is free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction I (Results)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 1)

$$
F_{D A T A}^{O R}\left(\theta^{+}\right)=W_{e e \gamma}^{O R} \cdot f_{M C e e \gamma}^{O R}\left(\theta^{+}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{+}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{\mathrm{OR}}\left(\theta^{+}\right)
$$

Wee is fixed according to luminosity. W $\mu \mu, W \pi \pi$ are free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 1)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 2)

$$
F_{D A T A}^{O R}\left(\theta^{+}\right)=W_{e e \gamma}^{O R} \cdot f_{M C e e \gamma}^{O R}\left(\theta^{+}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{+}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}\left(\theta^{+}\right)
$$

Wee, $\mathrm{W} \pi \pi$ are fixed according to luminosity, $\mathrm{W} \mu \mu$ is free

eek γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red, fitting function is magenta

Background subtraction II (Results Fit 2)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 3)

$$
F_{D A T A}^{O R}\left(\theta^{+}\right)=W_{e e \gamma}^{O R} \cdot f_{M C e e \gamma}^{O R}\left(\theta^{+}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{+}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}\left(\theta^{+}\right)
$$

$\mathrm{W} \pi \pi$ is fixed according to luminosity, $\mathrm{W} \mu \mu$, Wee are free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 3)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Negative muon polar angle

Background subtraction I (Fit)

$$
F_{D A T A}^{O R}\left(\theta^{-}\right)=W_{e e \gamma}^{X O R} \cdot f_{D A T A}^{N O R}\left(\theta^{-}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{-}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}\left(\theta^{-}\right)
$$

Wee, $W \pi \pi$ are fixed from trackmass, $W \mu \mu$ is free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red, fitting function is magenta

Background subtraction I (Results)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 1)

$$
F_{D A T A}^{O R}\left(\theta^{-}\right)=W_{e e \gamma}^{O R} \cdot f_{M C e e \gamma}^{O R}\left(\theta^{-}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{-}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}\left(\theta^{-}\right)
$$

Wee is fixed from trackmass, $W \mu \mu, W_{\pi \pi}$ are free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit I)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 2)

$$
F_{D A T A}^{O R}\left(\theta^{-}\right)=W_{e e \gamma}^{O R} \cdot f_{M C e e \gamma}^{O R}\left(\theta^{-}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{-}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}\left(\theta^{-}\right)
$$

Wee, $W \pi \pi$ are fixed from trackmass, $W \mu \mu$ is free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 2)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

Background subtraction II (Fit 3)

$$
F_{D A T A}^{O R}\left(\theta^{-}\right)=W_{e e \gamma}^{O R} \cdot f_{M C e e \gamma}^{O R}\left(\theta^{-}\right)+W_{\pi \pi \gamma}^{O R} \cdot f_{M C \pi \pi \gamma}^{O R}\left(\theta^{-}\right)+W_{\mu \mu \gamma}^{O R} \cdot f_{M C \mu \mu \gamma}^{O R}\left(\theta^{-}\right)
$$

$\mathrm{W} \pi \pi$ is fixed from luminosity. Wee, $\mathrm{W} \mu \mu$ are free

ee γ is green, $\pi \pi \gamma$ is blue, $\mu \mu \gamma$ is red,fitting function is magenta

Background subtraction II (Results Fit 3)

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Relative difference $=(E X P-M C) / E X P$

To the nature of bump at 85 MeV

DATA/MC trackmass difference as a function of Q^{2}

Let's start discussion?

DATA/MC Comparision in Q^{2} slices (I)

DATA/MC Comparision in Q^{2} slices (II)

Crosschecks with pions

INFN
istituto Naxionale dil Fisica Nucleare

Pions trackmass

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Positive pion polar angle

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Negative pion polar angle

histogram is MC $\mu \mu \gamma$ events, points with errors are EXP DATA, Normalization is to the number of EXP DATA events after background subtraction

Cross checks of MC Generators

Comparision $\mu^{+} \mu^{-}$MCGPJ \& Phokhara 6.0

 $M C G P J: 50^{\circ}<\vartheta_{\mu}<130^{\circ},\left|\vartheta_{\gamma}-90^{\circ}\right|>75^{\circ}, \sum E_{\gamma}>0.01 \mathrm{GeV}$ PHOKHARA : NLO $+I S R+F S R+F S N L O$
PHOKHARA is blue histogram

 MCGPJ is red points with errors

Quit good agreement in polar angle spectra is observed

Conclusion

Comparision DATA/MC was performed in both in integral over all \mathbf{Q}^{2} and in different \mathbf{Q}^{2} slices.

- The two ways of Bhabha background subtraction were studied, but presence of other background is seen and should be studied yet.
- MC resolution adjustment probably should be performed for muons
- The start of the work is good enough and many things were studied, but a lot of work has to be done for successful completion of whole analysis

Let's continue our fruitful collaboration! Thank You for Your attention

