

Fit to the gluonium content using PDG 2008 and new KLOE measurement of Br($\omega \rightarrow \pi^0 \gamma$)

Biagio Di Micco

- * Model description;
- *** Published KLOE result respect to other estimates;**
- **Re-fit to all relevant measurements;**
- * Re-fit using PDG-2008 and new KLOE measurement of Br($\omega \rightarrow \pi^0 \gamma$).

The η,η ' mesons wave function can be decomposed in the quark mixing base as in the following (J. L. Rosner, Phys. Rev. D 27 (1983) 1101.).

$$|\eta'\rangle = X_{\eta'} |q\bar{q}\rangle + Y_{\eta'} |s\bar{s}\rangle + Z_{\eta'} |G\rangle \quad |\eta\rangle = \cos\varphi_P |q\bar{q}\rangle - \sin\varphi_P |s\bar{s}\rangle \quad |q\bar{q}\rangle = \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}}$$
$$X_{\eta'} = \sin\varphi_P \cos\varphi_G$$
$$Y_{\eta'} = \cos\varphi_P \cos\varphi_G$$
$$Z_{\eta'} = \sin\varphi_G$$

The $\phi \rightarrow \eta, \eta' \gamma$ transition is modelled according a spin flip transition

Only quarks participate to the electromagnetic transition, gluonium is a spectator. It appears in the η' decay amplitudes only through the normalisation to 1 ($Y_{\eta'} \sim \cos \phi_G$)

Magnetic dipole transition

Magnetic dipole transition

example: Matrix element for $\rho \! \rightarrow \! \eta \gamma$ decay

 $|\rho\rangle = \frac{|u\bar{u}\rangle - |d\bar{d}\rangle}{\sqrt{2}}$ $\left\langle \rho | \frac{\mu_q e_q \sigma_q}{e} | \eta \right\rangle = \mu \cos(\varphi_P) 2/3 \left\langle u \bar{u}_\rho | u \bar{u}_\eta \right\rangle + 1/3 \left\langle d \bar{d}_\rho | d \bar{d}_\eta \right\rangle = \mu \cos(\varphi_P) \left\langle q \bar{q}_\rho | q \bar{q}_\eta \right\rangle$ $e/m_q \text{ (effective quark mass)}$ wave function overlapping $C_q = <\eta_q |\omega_q> = <\eta_q |\rho> \quad C_s = <\eta_s |\phi_s> \quad C_\pi = <\pi |\omega_q> = <\pi |\rho>$ In the formulas only the ratios appear: $Z_{NS} = C_a/C_{\pi}$ $Z_S = C_s/C_{\pi}$ QCD effects reside in mixing parameters, overlapping parameters and effective quark masses.

KLOE [Phys. Lett. B648 (2007) 267] has fitted:

$$\frac{\Gamma(\eta' \to \rho \gamma)}{\Gamma(\omega \to \pi^0 \gamma)} = \frac{z_q^2}{\cos^2 \phi_V} \cdot 3 \left(\frac{m_{\eta'}^2 - m_{\rho}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\eta'}} \right)^3 X_{\eta'}^2$$
$$\frac{\Gamma(\eta' \to \omega \gamma)}{\Gamma(\omega \to \pi^0 \gamma)} = \frac{1}{3} \left(\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\eta'}} \right)^3 \left[z_q X_{\eta'} + 2 \frac{m_s}{\bar{m}} z_s \cdot \tan \phi_V \cdot Y_{\eta'} \right]^2$$

together with the measured branching ratio:

 $\mathbf{R}_{\phi} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$ $R_{\phi} = \frac{Br(\phi \to \eta' \gamma)}{Br(\phi \to \eta \gamma)} = \cot^2 \phi_P \cdot \cos^2 \phi_G \left(1 - \frac{m_s}{\overline{m}} \frac{z_q}{z_s} \cdot \frac{\tan \phi_V}{\sin 2\phi_P}\right)^2 \cdot \left(\frac{p_{\eta'}}{p_{\eta}}\right)^3$

and the ratio:
$$\frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^0 \to \gamma\gamma)} = \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi}}\right)^3 \left(5X_{\eta'} + \sqrt{2}\frac{f_q}{f_s}Y_{\eta'}\right)^2 \quad \begin{array}{l} \text{E. Kou, Phys. Rev. D} \\ \textbf{63 (2001) 54027} \end{array}$$

KLOE [Phys. Lett. B648 (2007) 267] has fitted: $\frac{\Gamma(\eta' \to \rho \gamma)}{\Gamma(\omega \to \pi^0 \gamma)} = \frac{z_q^2}{\cos \phi_V} \cdot 3 \left(\frac{m_{\eta'}^2 - m_{\rho}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\eta'}} \right)^3 X_{\eta'}^2$ $\frac{\Gamma(\eta' \to \omega \gamma)}{\Gamma(\omega \to \pi^0 \gamma)} = \frac{1}{3} \left(\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\eta'}} \right)^3 \left[\sum_{q=1}^{\infty} q_{q'} + 2 \frac{m_s}{\overline{m}} \sum_{s=1}^{\infty} \ln \phi_V \cdot q_{\eta'} \right]^2$ Were taken from a global fit without gluonium:

A. Bramon, R. Escribano, M.D. Scadron Phys. Lett. B503 (2001) 271

together with the measured branching ratio:

 $R_{\phi} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$

$$R_{\phi} = \frac{Br(\phi \to \eta' \gamma)}{Br(\phi \to \eta \gamma)} = \cot^{2} \phi_{P} \cdot \cos^{2} \phi_{G} \left(1 - \frac{m}{\overline{m}} \left(\frac{z_{q}}{z_{s}} \cdot \frac{\tan \phi_{V}}{\sin 2\phi_{P}} \right)^{2} \cdot \left(\frac{p_{\eta'}}{p_{\eta}} \right)^{3} \right)$$

and the ratio:
$$\frac{\Gamma(\eta' \to \gamma \gamma)}{\Gamma(\pi^{0} \to \gamma \gamma)} = \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi}} \right)^{3} \left(5X_{\eta'} + \sqrt{2} \frac{f_{q}}{f_{s}} Y_{\eta'} \right)^{2}$$
 E. Kou, Phys. Rev. D
63 (2001) 54027

KLOE [Phys. Lett. B648 (2007) 267] has fitted:

 $\frac{\Gamma(\eta' \to \rho \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = \frac{z_{q}^{2}}{\cos^{2} \phi_{V}} \cdot 3 \left(\frac{m_{\eta'}^{2} - m_{\rho}^{2} m_{\omega}}{m_{\omega}^{2} - m_{\pi}^{2} m_{\eta'}} \right)^{3} X_{\eta'}^{2}$ $\frac{\Gamma(\eta' \to \omega \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = \frac{1}{3} \left(\frac{m_{\eta'}^{2} - m_{\omega}^{2} m_{\omega}}{m_{\omega}^{2} - m_{\pi}^{2} m_{\eta'}} \right)^{3} \left[z_{q} X_{\eta'} + 2 \frac{m_{s}}{\overline{m}} z_{s} \cdot \tan \phi_{V} \cdot Y_{\eta'} \right]^{2}$

T. Feldmann, Int. J. Mod. Phys. A 15 (2000) 159

together with the measured branching ratio:

 $R_{\phi} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$

$$R_{\phi} = \frac{Br(\phi \to \eta' \gamma)}{Br(\phi \to \eta \gamma)} = \cot^{2} \phi_{P} \cdot \cos^{2} \phi_{G} \left(1 - \frac{m_{s}}{\overline{m}} \frac{z_{q}}{z_{s}} \cdot \frac{\tan \phi_{V}}{\sin 2\phi_{P}} \right)^{2} \cdot \left(\frac{p_{\eta'}}{p_{\eta}} \right)^{3}$$

and the ratio:
$$\frac{\Gamma(\eta' \to \gamma \gamma)}{\Gamma(\pi^{0} \to \gamma \gamma)} = \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi}} \right)^{3} \left(5X_{\eta'} + \sqrt{2} \frac{f_{q}}{f_{s}} Y_{\eta'} \right)^{2}$$
 E. Kou, Phys. Rev. D
63 (2001) 54027

Leave the z's parameter free;
 Add more constraints (needed to perform the fit with larger number of parameters);
 Check the contribution from η'→ γγ / π°→ γγ

$$\frac{\Gamma(\omega \to \eta \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = \frac{1}{9} \left[z_{q} \cos(\phi_{p}) - 2 \frac{m_{s}}{\bar{m}} z_{s} \tan(\phi_{v}) \sin(\phi_{p}) \right]^{2} (1 - z_{G}^{2}) \left(\frac{m_{\omega}^{2} - m_{\eta}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}} \right)^{3}$$

$$\frac{\Gamma(\rho \to \eta \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = z_{q}^{2} \frac{\cos^{2}(\phi_{p})}{\cos^{2}(\phi_{v})} \left(\frac{m_{\rho}^{2} - m_{\eta}^{2}}{m_{\omega}^{2} - m_{\pi}^{2}} \frac{m_{\omega}}{m_{\rho}} \right)^{3}$$

$$\frac{\Gamma(\phi \to \eta \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = \frac{1}{9} \left[z_{q} \tan(\phi_{v}) \cos(\phi_{p}) + 2 \frac{\bar{m}}{m_{s}} z_{s} \sin(\phi_{p}) \right]^{2} \left(\frac{m_{\phi}^{2} - m_{\eta}^{2}}{m_{\omega}^{2} - m_{\pi}^{2}} \frac{m_{\omega}}{m_{\rho}} \right)^{3}$$

$$\frac{\Gamma(\phi \to \pi^{0} \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = \tan^{2} \phi_{v} \cdot \left(\frac{m_{\phi}^{2} - m_{\pi^{0}}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}} \cdot \frac{m_{\omega}}{m_{\phi}} \right)^{3}, \frac{\Gamma(K^{+*} \to K^{+} \gamma)}{\Gamma(K^{*0} \to K^{0} \gamma)} = \left(\frac{2 \frac{m_{s}}{\bar{m}} - 1}{1 + \frac{m_{s}}{\bar{m}}} \right)^{2} \cdot \left(\frac{m_{K^{*+}}^{2} - m_{K^{0}}^{2}}{m_{K^{*+}}^{2} - m_{K^{0}}^{2}} \cdot \frac{m_{K^{*+}}^{2}}{m_{K^{*+}}^{2}} \right)^{3}$$

The experimental covariance matrix B contains correlation among common used quantities in the fitted relations:

$$\frac{\Gamma(\omega \to \eta \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)}, \frac{\Gamma(\rho \to \eta \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)}, \frac{\Gamma(\phi \to \eta \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} \longrightarrow$$
Introduces a correlation in the fitted quantities

$\Gamma(\eta')$	$ ightarrow$ γ γ	<u>,)</u>	Br(z)	$\eta' \rightarrow$	$(\gamma \gamma)$	$\Gamma_{\eta'}$
$\Gamma(\pi^0$	$\rightarrow \gamma \gamma$	<u>_</u> (۲	Γ	$(\pi^0$ -	$\rightarrow \gamma \gamma$	·)
<i>x</i> ₂	-34					
<i>x</i> 3	-78	-29				
<i>x</i> ₄	-35	-24	32			
x_5	-26	-12	26	8		
<i>x</i> 6	-28	-11	35	11		
Г	32	$^{-2}$	-24	-5	-88	-8
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	~5	×6

	Mode	Rate (MeV)	Scale factor
Γ_1	$\pi^+ \pi^- \eta$	0.090 ± 0.008	1.2
Г2	$ ho^0\gamma$ (including non-resonant	0.060 ± 0.005	1.2
	$\pi^+ \pi^- \gamma$)		
Гз	$\pi^0 \pi^0 \eta$	0.042 ± 0.004	1.6
Г4	$\omega \gamma$	$0.0062\ \pm 0.0008$	1.2
Г <u>5</u>	$\gamma \gamma$	0.00430 ± 0.00015	1.1
Г6	$3\pi^0$	$(3.2 \pm 0.6) \times 10^{-10}$	-4 1.1

$$\frac{\Gamma(\eta' \to \rho \gamma)}{\Gamma(\omega \to \pi^{0} \gamma)} = \frac{Br(\eta' \to \rho \gamma)\Gamma_{\eta'}}{\Gamma(\omega \to \pi^{0} \gamma)}$$

Br and Γ strongly correlated (above all $\Gamma(\eta' \rightarrow \gamma \gamma)$)

the Γ is measured using:

$$e^+e^- \rightarrow \eta' e^+ e^-$$

An independent measurement of the $\eta^{\,\prime}$ total width is welcome.

10

$$\Gamma(P \to V \gamma) = \frac{g^2}{4\pi} |p_{\gamma}|^3$$

Fit redone a la Escribano

(using couplings and not taking into account correlations)

very similar results

		Fit with width ratios	Escribano et al.,	Fit with couplings
			JHEP 0705:006 (2007)	
-	$\chi^2/n.d.f(Prob)$	1.8/2 (41 %)	4.2/4 (38 %)	4.7/4 (32 %)
-	Z_G^2	0.03 ± 0.06	0.04 ± 0.09	0.04 ± 0.07
_	φ_G	$(10 \pm 10)^{\circ}$	$(12 \pm 13)^{\circ}$	$(11 \pm 11)^{\circ}$
_	φ_P	$(41.6 \pm 0.8)^{\circ}$	$(41.4 \pm 1.3)^{\circ}$	$(41.5 \pm 1.1)^{\circ}$
	Z_{NS}	0.85 ± 0.03	0.86 ± 0.03	0.86 ± 0.03
	Z_S	0.78 ± 0.05	0.79 ± 0.05	0.78 ± 0.05
	φ_V	$(3.16 \pm 0.10)^{\circ}$	$(3.2 \pm 0.1)^{\circ}$	$(3.18 \pm 0.10)^{\circ}$
	m_s/\bar{m}	1.24 ± 0.07	1.24 ± 0.07	1.24 ± 0.07
disapp	ear Z_K		0.89 ± 0.03	0.89 ± 0.03
in the	ratio g		0.72 ± 0.01	0.72 ± 0.01

Table 3: Comparison among the fit results without the $\eta' \to \gamma \gamma / \pi^0 \to \gamma \gamma$ measurement and the Escribano *et al.* results.

11

KLOS

Adding the $\eta' \rightarrow \gamma \gamma / \pi^0 \rightarrow \gamma \gamma$ constraint

Update using PDG 2008

B. Di Micco Fit to the gluonium content using PDG 2008 and new. Frascati- 16-1 2009

13

	Gluonium allowed	Gluonium at zero
$\chi^2/n.d.f(Prob)$	7.9/3~(5~%)	$15/4 (5 \times 10^{-3}))$
Z_G^2	0.097 ± 0.037	0 fixed
φ_P	$(41.0 \pm 0.7)^{\circ}$	$(41.7 \pm 0.5)^{\circ}$
Z_{NS}	0.86 ± 0.02	0.858 ± 0.021
Z_S	0.79 ± 0.05	0.78 ± 0.05
$arphi_V$	$(3.17 \pm 0.09)^{\circ}$	$(3.19 \pm 0.09)^{\circ}$
$m_s/ar{m}$	1.24 ± 0.07	1.24 ± 0.07

PDG08

The same gluonium content but unsatisfying fit quality.

	Gluonium allowed	Gluonium at zero
$\chi^2/n.d.f(Prob)$	5/3~(17.5~%)	13/4 (1.1 %)
Z_G^2	0.105 ± 0.037	0 fixed
$arphi_P$	$(40.7 \pm 0.7)^{\circ}$	$(41.6 \pm 0.5)^{\circ}$
Z_{NS}	0.866 ± 0.025	0.863 ± 0.024
Z_S	0.79 ± 0.05	0.78 ± 0.05
$arphi_V$	$(3.15 \pm 0.10)^{\circ}$	$(3.17 \pm 0.10)^{\circ}$
m_s/\bar{m}	1.24 ± 0.07	1.24 ± 0.07

Table 2: Fit results.

PDG06

B. Di Micco Fit to the gluonium content using PDG 2008 and new. Frascati- 16-1 2009

15

The $\omega \rightarrow \eta \gamma$ partial width changed from

 $(4.9 \pm 0.5) \times 10^{-4}$ to $(4.6 \pm 0.4) \times 10^{-4}$

This value is determined by the global PDG fit, and it is mainly determined by:

ACHASOV 07B: Phys. Rev. D76 (2007) 077101

 $\omega \rightarrow \eta \gamma$ branching ratio measurement from SND

The branching ratio is extracted with a global fit to the $e^+e^- \rightarrow \eta\gamma$ with a VMD model with ρ, ω, ϕ, ρ ' included (ρ ' parameters varied to compute systematics and constrained from $e^+e^- \rightarrow \eta\rho$).

ω contribution overwhelmed by the $ρ \rightarrow η γ$ contribution no correlation matrix is given in the paper

Direct $\omega \rightarrow \eta \gamma$ branching ratio measurement

$\Gamma(\eta\gamma)/\Gamma_{total}$

The fit is	VALUE (units	i 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
deminated by	4.6 ±0.4	OUR FIT	Error	includes scale factor	of 1.1		
dominated by	6.3 ±1.3	OUR AVE	RAGE	Error includes scale	factor	of 1.2.	
the SND	$6.6\ \pm 1.7$			⁵³ ABELE	97E	CBAR	$0.0 \ \overline{p} p ightarrow 5 \gamma$
measurement	$8.3\ \pm 2.1$			ALDE	93	GAM2	$38\pi^- p \rightarrow \omega n$
	$3.0 \begin{array}{c} +2.5 \\ -1.8 \end{array}$			⁵⁴ ANDREWS	77	CNTR	6.7–10 γ Cu

In Crystal Barrel the channel $p\overline{p} \rightarrow \eta \omega$ is used that is 6 times larger than $p\overline{p} \rightarrow \eta \rho$, the $\omega \rightarrow \eta \gamma$ Br was normalized to the $\omega \rightarrow \pi^0 \gamma$ Br

		Gluonium allowed	Gluonium at zero
	$\chi^2/n.d.f(Prob)$	3.9/3~(27.5~%)	13/4 (1.1 %)
using	Z_G^2	0.111 ± 0.036	0 fixed
$\omega \rightarrow \eta \gamma$ from	φ_P	$(40.6 \pm 0.7)^{\circ}$	$(41.5 \pm 0.5)^{\circ}$
PDG average	Z_{NS}	0.890 ± 0.025	0.882 ± 0.023
C	Z_S	0.79 ± 0.05	0.78 ± 0.05
	φ_V	$(3.15 \pm 0.10)^{\circ}$	$(3.18 \pm 0.09)^{\circ}$
	$m_s/ar{m}$	1.24 ± 0.07	1.24 ± 0.07

Results using KLOE Br($\omega \rightarrow \pi^0 \gamma$)

KLOE $Br(\omega \rightarrow \pi^0 \gamma) = 8.09 \pm 0.14 \%$ 3σ awayPDG08 $= 8.92 \pm 0.24 \%$

	Gluonium allowed	Gluonium at zero
$\chi^2/n.d.f(Prob)$	4.16/3~(25~%)	13/4 (1.1 %))
Z_G^2	0.109 ± 0.036	0 fixed
$arphi_P$	$(40.5 \pm 0.7)^{\circ}$	$(41.4 \pm 0.5)^{\circ}$
Z_{NS}	0.935 ± 0.025	0.926 ± 0.023
Z_S	0.83 ± 0.05	0.82 ± 0.05
$arphi_V$	$(3.3 \pm 0.09)^{\circ}$	$(3.3 \pm 0.09)^{\circ}$
$m_s/ar{m}$	1.24 ± 0.07	1.24 ± 0.07

No big effect on Z_{G} but important contribution to $Z_{S,NS}$ and ω - ϕ mixing angle

Memo almost ready, will be internally published next week for referee review (S. Giovanella & P. Gauzzi).

1) Measure $\eta' \rightarrow \gamma \gamma$ branching ratio that is the only one pointing for the gluonium;

2) Improve $\phi \rightarrow \eta' \gamma$ through the measurement of $\eta' \rightarrow \pi \pi \eta$, $\pi^+ \pi^- \gamma$, $\omega \gamma$, $\gamma \gamma$, $\pi^+ \pi^- \pi^0$ (upper limit), $n^\circ \pi$;

Fit procedure.

The χ^2 is defined as follows:

$$\chi^{2} = \Sigma_{i,j=1,3} \left(y_{i} - y_{i}^{th} \right) \times V_{ij}^{-1} \left(y_{j} - y_{j}^{th} \right)$$

23

 V_{ij} is the error matrix which is a function of theoretical uncertainties, as well as the experime

$$V_{ij} = [B_{ij} + (A_{ik} \times C_{kl} \times A_{lj}^{T})]$$
Experimental covariance matrix
$$B_{ij} \quad \begin{array}{c} \text{Full covariance matrix} \\ \text{Full covariance matrix} \\ B_{ij} \quad \begin{array}{c} \text{Full covariance matrix} \\ \text{(correlation comes} \\ \text{from the constrained} \\ \text{fit to } \eta' \text{ Br} \end{array} ; A_{ik} = \begin{pmatrix} \frac{\partial y_{1}^{th}}{\partial f_{s}} & \frac{\partial y_{1}^{th}}{\partial f_{q}} & \frac{\partial y_{1}^{th}}{\partial C_{NS}} & \frac{\partial y_{1}^{th}}{\partial C_{NS}} & \frac{\partial y_{1}^{th}}{\partial C_{S}} & \frac{\partial y_{1}^{th}}{\partial m_{s}} \\ \frac{\partial y_{2}^{th}}{\partial f_{s}} & \frac{\partial y_{2}^{th}}{\partial f_{q}} & \frac{\partial y_{2}^{th}}{\partial C_{NS}} & \frac{\partial y_{2}^{th}}{\partial C_{S}} & \frac{\partial y_{2}^{th}}{\partial m_{s}} \\ \frac{\partial y_{3}^{th}}{\partial f_{s}} & \frac{\partial y_{1}^{th}}{\partial f_{q}} & \frac{\partial y_{1}^{th}}{\partial C_{NS}} & \frac{\partial y_{1}^{th}}{\partial C_{S}} & \frac{\partial y_{1}^{th}}{\partial m_{s}} \\ \frac{\partial y_{1}^{th}}{\partial f_{s}} & \frac{\partial y_{1}^{th}}{\partial f_{q}} & \frac{\partial y_{1}^{th}}{\partial C_{NS}} & \frac{\partial y_{1}^{th}}{\partial C_{S}} & \frac{\partial y_{1}^{th}}{\partial m_{s}} \\ C_{kl} = \begin{pmatrix} \sigma_{f_{q}}^{2} & 0 \\ 0 & \sigma_{f_{s}}^{2} \end{pmatrix} \\ \end{array}$$