Status report on the $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ analysis

S. Giovannella and R. Versaci 29 9 2008

Conclusions from PONZA

$\eta \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$ analysis in advanced status

evaluation of systematics

investigation of unknown background

Possible solutions: - Bhabha MC production

Reminder

Data sample

Using drc/mrc streams with ETA4C tag

79 pb⁻¹ data 2002 \longrightarrow As of now, not used 1733 pb⁻¹ data 2004/05 50517 pb⁻¹ MC signal only \longrightarrow New: Run by run 3479 pb⁻¹ MC all_phys(2/3) 2004/05 250 pb⁻¹ data offpeak ($\sqrt{s} = 1000 \text{ MeV}$) New

Procedure review

1. EVCL	ETA4CTAG
2. Momenta	450 < S4p < 600 MeV .and. 270 < S2p < 460 MeV
3. <mark>χ²</mark>	χ ² < 4000
4. Conversions	Mee > 15 MeV .or. Dee > 2.5 cm (@BP)
5. Μ _{ππee}	$535 < M_{\pi\pi ee} < 555 \text{ MeV}$

Fit description

 Stand alone program using HBOOK and MINUIT (we have dropped midnight)

 Components that can be used: MC signal, MC all_phys, Data offpeak

- Possible to fit both whole spectrum and sidebands
- Possible to fix scale factors using luminosity

Fit description

As default we have chosen to:

- fit on sidebands using offpeak data and all_phys MC [420.,530.] MeV U [560.,680.] MeV
- fix offpeak using luminosity, because of its small statistics $SF_{offpeak} = L_{data} / L_{offpeak} = 6.93$ scaling with \sqrt{s} has been accounted for

Fit results

Fit results

 $P(\chi^2)=0.62 \cdot 10^{-11}$ FCN=159.9 dof=56 0.5368 ± 0.0035 frac. unc. 0.0064 SF all phys $N_{Data} = 1979$ $N_{signal} = 1559.1$ $N_{bckg} = 419.9$ $N_{an} = 281.3$ $N_{op} = 138.6$ $\Delta N_{signal}/N_{signal} = 0.0537$ $N_n = (717 \pm 11) \cdot 10^5$ $\Delta N_{n}/N_{n} = 0.0156$ from $N_n = L\sigma$ $\varepsilon = 0.0835 \pm 0.0003$ $\Delta \epsilon / \epsilon = 0.0036$ from MC signal BR = $N_{signal} / N_n / \epsilon = (26.05 \pm 1.47) \cdot 10^{-5}$ $\Delta BR/BR = 0.056$

Signal SF = N_{ev} (data-bck) / N_{ev} (signal MC)

Systematics

Changing each cut separately

Two ways:

- 1) maximum difference between BR values
- 2) RMS of BR distributions
- Changing the counting level
- Changing the binning
- Changing the fit range
- Changing scale factors "freedom" (free or fixed with luminosity)

Changing cuts

Systematics

	RMS		Max ∆BR	
χ^2	100-10000	0.30	3000-5000	0.20
d _{ee}	1.5-3.5 cm	0.02	2.0-3.0 cm	0.05
M_{ee}	5-25 MeV	0.45	13-17 MeV	0.23
$M_{\pi\pi ee}$ min	525-540 MeV	0.15	530-540 MeV	0.39
$M_{_{\pi\pi ee}} \max$	550-565 MeV	0.13	550-560 MeV	0.16
s2p min	240-300 MeV	0.19	260-280 MeV	0.23
s2p max	430-490 MeV	0.11	450-470 MeV	0.13
s4p min	420-480 MeV	0.09	440-460 MeV	0.07
s4p max	570-630 MeV	0.01	590-610 MeV	0.01
	$\sqrt{\Sigma} \mathbf{X}^2$:	= 0.62	$\sqrt{\Sigma x^2} =$	0.59

Huge variations!

Systematics

Default reminder: fit after χ^2 and momenta cuts counting after cut on $M_{\pi\pi ee}$

Counting after cut on conversions $N_{Data} = 5467$ $N_{signal} = 1747.3$ $N_{bckg} = 3719.7$ $N_{ap} = 2458.5$ $N_{op} = 1261.3$ $\Delta N_{signal}/N_{signal} = 0.0213$ $\epsilon = 0.0899 \pm 0.0003$ $\Delta \epsilon/\epsilon = 0.0035$ from MC signal BR = N_{signal} / N_{\eta} / $\epsilon = (27.12 \pm 0.74) \cdot 10^{-5}$ $\Delta BR/BR = 0.027$

Both within 1σ

[420.,530.] MeV U [560.,680.] MeV [420.,525.] MeV U [565.,680.] MeV [420.,520.] MeV U [570.,680.] MeV [420.,515.] MeV U [575.,680.] MeV [450.,530.] MeV U [560.,650.] MeV [450.,520.] MeV U [570.,650.] MeV BR = $(26.05 \pm 1.47) \cdot 10^{-5}$

BR = $(26.07 \pm 1.70) \cdot 10^{-5}$

BR = $(26.11 \pm 1.69) \cdot 10^{-5}$

BR = $(26.20 \pm 1.58) \cdot 10^{-5}$

BR = $(26.08 \pm 1.75) \cdot 10^{-5}$

BR = $(26.15 \pm 1.67) \cdot 10^{-5}$

BR = (25.96 ± 1.85) ·10⁻⁵

RMS = 0.07

Changing binning

- 1 MeV/bin BR = $(26.12 \pm 1.47) \cdot 10^{-5}$
- 2 MeV/bin BR = $(26.09 \pm 1.47) \cdot 10^{-5}$
- 3 MeV/bin BR = $(26.05 \pm 1.65) \cdot 10^{-5}$
- 4 MeV/bin BR = $(26.05 \pm 1.47) \cdot 10^{-5}$
- 5 MeV/bin BR = $(25.99 \pm 1.61) \cdot 10^{-5}$

RMS = 0.04

all phys free – offpeak w/ lumi Both all phys and offpeak with lumi all phys w/ lumi – offpeak free Both all phys and offpeak free

- $BR = (26.05 \pm 1.47) \cdot 10^{-5}$
- BR = $(26.43 \pm 1.79) \cdot 10^{-5}$
- BR = $(26.69 \pm 1.82) \cdot 10^{-5}$
- BR = (26.22 ± 1.98) · 10⁻⁵

RMS = 0.24

Asymmetry is slightly distorted by the analysis

with a $\pm 1\sigma$ variation for systematics evaluation

Asymmetry

 $A_{\phi} = -1.13 \pm 2.53_{stat.} \pm 0.47_{syst.} \pm X_{syst.}$

The first systematic uncertainty accounts for different corrections

The second systematic uncertainty, accounting for changes of the analysis cuts, has still to be evaluated

Conclusion

Branching ratio ready for collaboration review

meeting with referee already scheduled

last checks to be performed

BR = (26.05 ± 1.47_{stat.} ± 0.67_{syst.})·10⁻⁵

Asymmetry very close to the end

 $A_{\phi} = -1.13 \pm 2.53_{stat.} \pm 0.47_{syst.} \pm X_{syst.}$

Backup slides

BR: theory & experiment

Jarlskog, Pilkuhn 1967 Using PDG06 $(30.5 \pm 0.7) \times 10^{-5}$	0.0065 × BR(η→ $\pi^+\pi^-\gamma$) Using CLEO '07 (25.7 ± 1.3) × 10 ⁻⁵
Picciotto, Richardson 1993	(32 ± 3) × 10 ⁻⁵
Faessler et al. 2000	36 × 10 ⁻⁵
Borasoy, Nissler 2007	(29.9 ^{+0.6} _{-0.9}) × 10 ⁻⁵
CMD-2 (4 events)	(37 ⁺²⁵ _{-18 stat} ± 3 _{syst}) × 10 ⁻⁵
CELSIUS-WASA-2006 (16 events)	$(43 \pm 13_{stat} \pm 4_{syst}) \times 10^{-5}$
CELSIUS-WASA-2007 (16 events)	(43 ⁺²⁰ _{-16 stat} ± 4 _{syst}) × 10 ⁻⁵