Status report on $\eta \to \pi^- \pi^+ \gamma$ PRE-SELECTION STUDIES

Marek Jacewicz, Biagio Di Micco Camilla Di Donato

Phi decays working group meeting, 29 Sep 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Motivation

- BR, background to $\eta \rightarrow {\rm e}^+ {\rm e}^- \gamma, \, \eta \rightarrow \mu^+ \mu^- \gamma$
- Study of theoretical models
 - B.Borasoy and R.Nissler, hep-ph arXiv:0705.0954 Inconsistency in the old measurements of the γ spectrum
 - $\Gamma(\eta \rightarrow \pi^- \pi^+ e^+ e^-) / \Gamma(\eta \rightarrow \pi^- \pi^+ \gamma)$ Theor. accuracy: 1-2%

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Dalitz plot (anomalous (triangle box) vs resonant contribution (VDM))

Signal / Background

Reaction:

$$\begin{split} \phi &\to \eta \gamma, \, \eta \to \pi^- \pi^+ \gamma \\ \phi &\to \eta \gamma, \, \eta \to \pi^- \pi^+ \pi^0 \\ \phi &\to \eta \gamma, \, \eta \to \mathbf{e}^+ \mathbf{e}^- \gamma \\ \phi &\to \pi^+ \pi^- \pi^0 \\ \mathbf{e}^+ \mathbf{e}^- \to \omega \pi^0 \end{split}$$

X-section $\sigma[\mu b]$ 2.04×10⁻³ 9.87×10⁻³ 0.30×10⁻³ 0.46 0.14×10⁻³

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Charged η decays (most frequent): $\eta \to \pi^{-}\pi^{+}\pi^{0}$ (22.73 ± 0.28) × 10⁻² $\eta \to \pi^{-}\pi^{+}\gamma$ (4.60 ± 0.16) × 10⁻² $\eta \to e^{+}e^{-}\gamma$ (6.8 ± 0.8) × 10⁻³ $\eta \to \mu^{+}\mu^{-}\gamma$ (3.1 ± 0.4) × 10⁻⁴

Photons' spectra 1

・ ロ ト ・ 雪 ト ・ 目 ト

э

500

Photons' spectra 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(で)

Efficiencies 1

ヨト キヨト ヨー わらで

Efficiencies 2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

◆ロト ◆掃 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の Q ()~.

•
$$\phi \to \eta \gamma \longrightarrow$$

- no kinematical fit (instead find constraints that pick out all signals)
- MC 2005 (all phys), runs: 34410 ÷ 34499, L_{int} = 12.7 pb⁻¹
- Running: *RAD*, *RPI* & *RAD*, *KPM* & *RAD* & *RPI*
- \geq 2 prompt photons $|t_{cl}-l_{cl}/c| < 5\sigma_t$
- most energetic photon with *E_γ* ≥ 250 MeV assumed 'recoil'
- ≥ 1 vertex with two tracks and balanced charge, selecting closest to the IP

•
$$\eta \rightarrow \pi^{-}\pi^{+}\gamma$$

• $\eta \rightarrow \pi^{-}\pi^{+}\pi^{0}$ /
• $\eta \rightarrow e^{+}e^{-}\gamma$

signal

normalization for later

▲□▶▲□▶▲□▶▲□▶ □ つへで

Calculation of $E_{\gamma recoil}$

- · Good angular but bad energy resolution for photons
- Help with 2-body kinematics of $\phi \rightarrow \eta \gamma$

$$egin{aligned} ec{p}_\eta &= ec{p}_\Phi - ec{p}_\gamma \ E_\gamma &= rac{m_\Phi^2 - m_\eta^2}{2 \cdot (E_\Phi - \mid ec{p}_\Phi \mid \cdot \cos heta)} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

where $\cos \theta$ is an angle between Φ and γ^{recoil}

Calculation of $E_{\gamma_{\eta}}$

Having corrected the energy of the recoil photon we can calculate $\mathbb{P}_{\gamma_{\eta}}^{calc} = \mathbb{P}_{\Phi} - \mathbb{P}_{\pi^{+}} - \mathbb{P}_{\pi^{-}} - \mathbb{P}_{\gamma}^{recoil}$ and look at the energy $E_{\gamma_{\eta}}^{calc}$:

Possible constraints:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- From candidates neutral clusters, we select the closest to $\mathbb{P}^{\textit{calc}}_{\gamma_n}$
- Opening angle to the calculated γ_η effectively rejects background

▲ロト ▲□ ト ▲ □ ト ▲ □ ト ● ● の Q @

 For the calculation of the M_η one can correct the photon energy using calculated value

RPI STREAM

KPM stream

KPM

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Statistics 1

	total on DST	pre-selection	Event signature
		\geq 2 prompt clusters	(tracks)
RAD	1194777	383475	
$\eta ightarrow \pi^- \pi^+ \gamma$	22131	17619 (80%)	12553 (57%)
$\eta ightarrow \pi^- \pi^+ \pi^0$	105791	90089 (85%)	58622 (55%)
$\eta ightarrow {f e}^+ {f e}^- \gamma$	839	684 (81%)	421 (50%)
background	1060351	273177 (26%)	230217 (22%)
RPI	3647348	1203355	
$\eta ightarrow \pi^- \pi^+ \gamma$	2032	1691 (83%)	1549 (76%)
$\eta ightarrow \pi^- \pi^+ \pi^0$	39	30 (77%)	20
$\eta ightarrow {f e}^+ {f e}^- \gamma$	17	14 (82%)	14
background		1201613 (33%)	1145623 (31%)
KPM	12370050	92491	
$\eta ightarrow \pi^- \pi^+ \gamma$	2221	1190 (54%)	588 (26%)
$\eta ightarrow \pi^- \pi^+ \pi^0$	13703	8133 (59%)	3879 (28%)
$\eta ightarrow {f e}^+ {f e}^- \gamma$	128	96 (75%)	68 (53%)
background		79690	43577

Per-cent values are calculated w.r. to the total number of the events for given stream (and NOT to the total value given by the BR)

Statistics 2

	M_{γ}	Et-Pt	Opening Angle
	(135±15 MeV)	(-10 MeV \div 10 MeV)	$(0 \div 0.2 \text{ rad})$
RAD			
$\eta ightarrow \pi^- \pi^+ \gamma$		10321 (47%)	9629 (43%)
$\eta ightarrow \pi^- \pi^+ \pi^0$	46181 (44%)		
background	5745 (0.5%)	40533 (4%)	7595 (0.7%)
RPI			
$\eta ightarrow \pi^- \pi^+ \gamma$		1439 (71%)	1359 (67%)
$\eta ightarrow \pi^- \pi^+ \pi^0$			
background		211304 (6%)	84089 (2%)
KPM			
$\eta ightarrow \pi^- \pi^+ \gamma$		259 (12%)	182 (8%)
$\eta ightarrow \pi^- \pi^+ \pi^0$	1225 (9%)		
background	1434	2683	61

Per-cent values are calculated w.r. to the total number of the events for given stream (and NOT to the total value given by the BR)

Track selection

- to use vertex bank or not? (at the pre-selection level)
 - in 20% of selected vertexes at least for one track pion hypothesis is wrong (muon)
 - lower efficiency
 - are the track parameters better? For pions, electrons ...

▲ロト ▲□ ト ▲ □ ト ▲ □ ト ● ● の Q @

· if not more work is needed to investigate the alternatives

Conclusions

- plan was to analyze events from 3 streams: RAD, RPI, KPM, but is KPM worth the effort?
- worse track reconstruction in KPM and hence rejection of signal events (left with > 1% of total BR)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- pre-selection criteria without kinematic fit
- good background reduction in RAD, KPM
- still flooded with background in RPI
- TO DO: track selection
 - add $\eta \rightarrow e^+ e^- \gamma$ to pre-selection
 - repeat analysis of Ilaria (RAD stream only)

Introduction

• Previous analysis in KLOE:

Ilaria Villella (Uni. di Napoli) presented during Capri'03:

- $L_{int} = 29 \text{ pb}^{-1}$, selected 18508 events
- Could not use single streaming algorithm because all of them cut into kinematical distributions

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Planned analysis on 100 pb⁻¹ (?)

Mγγ (MeV)

Shark plot

