

Status of Large photon polar Angle Analyses

Paolo Beltrame for the Mainz $\pi\pi\gamma$ group

Outlook

LA 2002

- Where were we last time?
- Changes: unfolding and LO-/NLO- FSR (unshifting)
- Pion Form Factor extraction

PoP

- Overview on all the further steps of the analysis:
 - background subtraction
 - efficiencies
 - unfolding and unshifting
- Pion Form Factor

Status of Large Angle 2002

LA 2002 Analysis flow

Where were we?

Last referee meeting (9.05.2008) conclusion

(Memo LA2002 circulating among the referees)

- Systematic error on $IF_{\pi}I$ (w/o $f_0 \& \rho \pi \gamma$ contribution)

0.4 GeV ²	0.6 GeV ²	0.85 GeV ²
0.8%	0.6%	1.0%

- Scalar background: insertion of the latest $f_0 + \rho \pi \gamma$ model (Achasov) together with the best radiative correction description, PHOKHARA6.1 (Olga Shekhovtsova)

 $(ISR+sQED+f_0+\rho\pi\gamma)/(ISR+sQED)$

Where were we?

- *FSR-NLO* (*unshifting*) and *unfolding* corrections using matrix (D'Agostini) instead of bin by bin (as it is in SMA 2002)
- Extended measurement down to 0.3 GeV² (previosusly it was at 0.5 GeV²)
- Theoretical error on FSR still under discussion

Unfolding, Unshifting and Global Efficiency

Previously: Global efficiency, bin-by-bin unfolding, bin-by-bin unshifting **In one step** (PHOKHARA5Ω)

 dN / ds_{π}^{rec} (all cuts)

 dN / ds_{γ^*} (no cuts)

Now: unfolding a'la D'Agostini (Bayes), Global efficiency, unshifting a'la D'Agostini (Bayes) Three steps a'la PoP (PHOKHARA5Ω)

PHOKHARA5 Ω dN / ds_{π}^{REC} (all cut *rec*) \downarrow dN / ds_{π}^{KINE} (all cuts *rec*)

Unfolding

- Two approaches:
- bin by bin
- Bayesian approach (D'Agostini)

- Spectrum not deformed by unfolding
- Agreement between the two approaches
- More statistics needed

Global efficiency

Analysis cuts

- $\rho_{\text{PCA}}\!<\!$ 8 cm, $\text{IzI}_{\text{PCA}}\!<\!$ 12 cm, $\rho_{\text{FirstHit}}\!<\!$ 50 cm
- $\rho_{\text{VTX}}\!<\!$ 8 cm, $|z|_{\text{VTX}}\!<$ 12 cm
- $50^{\circ} < \theta_{\pi,\gamma} < 130^{\circ}$
- .and. of $\pi\text{-e}$ likelihood function
- χ²_{πππ}> 200
- $M_{trk}(s_{\pi})$
- $\Omega_{p_{miss}-\gamma}(s_{\pi})$

- Up to 5% disagreement between the two approaches
- This directly affects F_{π}

 \Rightarrow Must be understood

Status of Large Angle 2006

Background rejection

Analysis cuts

- ρ_{PCA} < 8 cm, lzl_{PCA} < 12 cm
- ρ_{FirstHit} < 50 cm
- no vertex
- 50° < $\theta_{\pi,\gamma}$ < 130°
- lpl > 200 MeV/c
- .or. of π -e likelihood
- no $\chi^2_{\pi\pi\pi}$

-
$$M_{trk}(s_{\pi})$$

- $\Omega_{p_{miss}\gamma}(s_{\pi})$

 $M_{trk}(s_{\pi}) \pm \delta_{Mtrk} \approx 1\sigma$

Background subtraction

Fitting procedure applied to M_{trk} shapes in slices of s_{π}

1.. XOR. to get ee_{γ} amount

2. . OR. to get $\mu\mu\gamma$ and $\pi\pi\pi$ amount

Paolo Beltrame phidec meeting LNF - 28.08.08

Spectrum and Background

Analysis cuts

- ρ_{PCA} < 8 cm, IzI_{PCA} < 12 cm
- $\rho_{\text{FirstHit}}\!<$ 50 cm
- no vertex
- $50^{\circ} < \theta_{\pi,\gamma} < 130^{\circ}$
- lpl > 200 MeV/c
- .or. of $\pi\text{-}e$ likelihood
- no $\chi^2_{\pi\pi\pi}$
- $M_{trk}(s_{\pi})$
- $\Omega_{p_{miss}-\gamma}(s_{\pi})$

Background subtraction

Spectrum and Background

Further checks to be done for $ee\gamma$ at low s_{π}

- using ee_γ MC
- enlarging the bins and the slices for the fit

FILFO and Likelihood efficiency

Filfo efficiency Efficiency directly from DATA Using downscaled events

- fit the efficiency and correct the spectrum via the fit function

π -e likelihood with TCA efficiency (.or.)

Efficiency directly from DATA. Selecting $\pi\pi\gamma$ events - All the analysis selection

 \Rightarrow look for at least one track associated to a cluster and with $L_{\pi}/L_{\rm e} > 0$

- 1. Efficiency in slices of θ as a function of p
- 2. Mapping of $\varepsilon(\pm,\theta,p)$ to get $\varepsilon(s_{\pi})$

 $\varepsilon = 1 - (1 - \varepsilon(+, \theta, p))(1 - \varepsilon(-, \theta, p)) \rightarrow \varepsilon(\mathsf{s}_{\pi})$

- cross check with MC

- Spectrum not deformed by unfolding
- Agreement between the two approaches

Global efficiency

Analysis cuts

- ρ_{PCA} < 8 cm,

 $|z|_{PCA} < 12 \text{ cm}$

- $\rho_{\text{FirstHit}}\!<\!$ 50 cm
- no vertex
- 50° < $\theta_{\pi,\gamma}$ < 130°
- lpl > 200 MeV/c
- .or. of π -e likelihood
- no $\chi^2_{\pi\pi\pi}$

-
$$M_{trk}(s_{\pi})$$

- $\Omega_{p_{miss}-\gamma}(s_{\pi})$

Tracking efficiency

Selecting $\pi\pi\gamma$ events

- Tagging Track
- Neutral prompt cluster

 \Rightarrow search for another track with opposite charge

 ρ_{FH} < 50 cm, ρ_{PCA} < 8 cm and Iz $_{\text{PCA}}$ I < 12 cm

- 1. Efficiency in slices of θ as a function of lpl for DATA and MC
- 2. DATA/MC correction obtained from fit of $\epsilon(\pm,p)$ in slices of θ

3. Mapping of
$$\varepsilon(\pm,\theta,p)$$
 to get $\varepsilon(s_{\pi})$

Trigger efficiency

Selelecting $\pi\pi\gamma$ events

- All the analysis selection
- 1. Efficiency in slices of θ as a function of IpI for DATA and MC for a single particle to fire 0, 1 or 2 trigger sectors (P(0), P(1), P(2))
- 2. Mapping of $\varepsilon(\pm,\theta,p)$ to get $\varepsilon(s_{\pi})$

Getting the inefficiency and fro that the efficiency

 $\epsilon = 1 - P^{+}(0)P^{-}(0)P^{\gamma}(0) - P^{+}(1)P^{-}(0)P^{\gamma}(0) - P^{+}(0)P^{-}(1)P^{\gamma}(0) - P^{+}(0)P^{-}(0)P^{\gamma}(1) \rightarrow \epsilon(s_{\pi})$

LO-/NLO- FSR correction (unshifting)

Excellent agreement between the two methods

Pion Form Factor & comparisons

Discrepancies at low s_{π} region: f_{θ} + $\rho\pi\gamma$ contamination And small discrepancy at high s_{π} region

Pion Form Factor & comparisons 0.2 PoP/SMA2002 - 1

Nice agreement. Trend at low s_{π} up to ~8% Lower of ~1% above 0.7GeV²

Conclusion

LA2002

- Questions from referees answered
- ⇒ Unfolding and FSR a'la D'Agostini, like SMA2002, done still to be understood discrepancy between the two approaches for FSR
- Ready to go down to 0.3 GeV²
- Discussion ongoing about the treatment of the error on sQED approximation

PoP

- All the main steps of the analysis done
- ⇒ Analysis cuts, background rejection, efficiencies, unfolding and unshifting
- Preliminary Pion Form Factor extracted
- Some other checks to be done
- Evaluation of systematics in progress

Backup slides

PoP Analysis flow

Unfolding & Unshifting

$$N_i^{true} = \sum_{j=1}^{true} P(N_i^{true} \mid N_j^{rec}) \cdot N_j^{rec}$$

Two methods to get $P(N_i^{rec} | N_i^{true})$

1.
$$\sum_{i=1}^{n_{tue}} P(N_i^{true} \mid N_j^{rec}) = 1 \text{ bin by bin}$$

2.
$$P(N_i^{true} \mid N_j^{rec}) = \frac{P(N_j^{rec} \mid N_i^{true}) \cdot P_0(N_i^{true})}{\sum_{l=1}^{n_{true}} P(N_j^{rec} \mid N_i^{true}) \cdot P_0(N_i^{true})}$$
Bayes' theorem

No cuts applied to unfold and to unshift For unfolding only reconstruction required both in N_i^{rec} and N_i^{true}

Unshifting matrix for LA2002

a.
$$M_{trk}^{up}(s_{\pi}) = 150 + 3.5 \cdot 10^{-4} e^{11 \cdot s_{\pi}} \pm \delta_{Mtrk}$$

b.
$$M_{trk}^{low} = 120 \pm \delta_{Mtrk}$$

$$\mathbf{C.} \quad \mathbf{\Omega}(s_{\pi}) = 1 + 0.4 \cdot e^{6.5 \cdot s_{\pi}} \pm \delta_{\Omega}$$

