Status report on $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

S. Giovannella R. Versaci

Data sample Tracking efficiency PID using TOF Cluster veto correction Procedure review "Low-θ" background **Data-MC comparison** Non
 backgrounds Conclusions

Data sample

Statistics increased both for data and MC

- As for now, not used 79 pb⁻¹ data 2002 1719 pb⁻¹ data 2004/05 Using drc/mrc streams with ETA4C tag 46×10^3 pb⁻¹ MC signal only 3479 pb⁻¹ MC all phys(2/3) 2004/05 850 pb⁻¹ MC eeg100 2004/05 2790 pb⁻¹ MC ppgphok5 2004/05 → Private production Thanks to (on going - LSF=5)
 - A. De Santis

using \rho\pi sample work done together with A. De Santis 21.05 Data^{/E}MC $C_{c} = A \{ 1 - 1 / [1 + exp((X - X_{0})/\delta)] \}$ KLOE Memo 343 0.95 <u>Code updated</u>: Slice A new ntuples 0.9 Negative produced applying the efficiency Positive correction 0.85 0.8300 100 200 400P. miss (Mev/c)

Asymmetry in $M\pi\pi$ ee spectrum due to *wrong mass assignment*

Cluster veto correction

Effect of the veto in ETA4CTAG has been evaluated

<u>Reminder</u>: ETA4CTAG rejects events having neutral clusters in the range $50 < E_{cl} < 250$ MeV

#events w/ accidental clusters in vetoed range

	#ever	#events w/o accidental clusters in vetoed range		
			Ratio	
2004	125937	26483346	0.00475(1)	
2005	327349	61225992	0.00535(1)	
2004⊕2005	453286	87709338	0.00517(1)	

Correction to be applies to the branching ratio

Procedure review

Backgrounds normalized using luminosity instead of fitting (NEW)

1. EVCL	ETA4CTAG
2. Momenta	450 <s4p<600 270<s2p<460="" and="" mev="" mev<="" td=""></s4p<600>
3 . χ ²	χ ² < 4000
4. Conversions	Mee>15 MeV and Dee>2.5 cm (@BP)
5. "QCAL" events	$<\cos\theta_{+}> < 0.85$ and $<\cos\theta_{-}> > -0.85$
6. Μππee	535 <mππee<555 mev<="" td=""></mππee<555>

Data-MC comparison at each step Discrepancies can be hint of non- ϕ backgrounds (i.e. $\pi\pi\gamma$, and ee γ)

Low-θ background

We had seen on data events not simulated in MC

TOF of "pions" (i.e. particles with higher momenta), compatible with electrons TOF

Studied with Didone

Small angle tracks

A particle hits something in the BP producing two more particles

Very good agreement

Very good agreement

Very good agreement

Very good agreement (even in the asymmetry!)

ππγ and eeγ backgrounds

Present after EVCL Reduced by momenta and χ^2 cuts Very few MC statistics left

ππγ and eeγ backgrounds

Present after EVCL Reduced by momenta and χ^2 cuts Very few MC statistics left

ππγ

We are producing $\pi\pi\gamma$ MC using ppgphok5 card for 2004-05 data with LSF=5

Seems that $\pi\pi\gamma$ contribution to mysterious background is negligible

Studied using eeg100 **ee**γ production (LSF=0.5) for 2004-05 data

We don't have MC for events having $E\gamma$ <100 MeV Cross section is too big for private MC production

Smart solution is needed

Conclusions

- Tracking efficiency
- ☺ PID with TOF
- Whole 2004-2005 statistics available and used
- ☺ Whole MC all_phys (1/2/3) statistics available and used

- Good Data-MC agreement
- Background from continuum processes

Motivations

 η structure, using virtual photon Model comparison (VMD, χ PT) Mod.PhysLett.A17 Test of CP violation: Gao model 1583-1588.2002 Angular asymmetry between ee and $\pi\pi$ planes, A_{CP} , can be due to unconventional CPV mechanism described by a T×V 4 quarks operator with $\Delta s=0$. Within SM constrained by BR($\eta \rightarrow \pi \pi$), using the experimental upper limit: $A_{CP} < 10^{-4}$ using theoretical prediction: $A_{CP} \sim 10^{-15}$ CPV model predicts an upper bound of 10⁻²

BR: theory & experiment

Jarlskog, Pilkuhn 1967	0.0065 × BR($\eta \rightarrow \pi^+\pi^-\gamma$)	
Jsing PDG06 (30.5 ± 0.7) × 10 ⁻⁵	(25.7 ± 1.3) × 10 ⁻⁵ Using CLEO '07	
Picciotto, Richardson 1993	$(32 \pm 3) \times 10^{-5}$	
Faessler et al. 2000	36×10^{-5}	
Borasoy, Nissler 2007	$(29.9^{+0.6}_{-0.9}) \times 10^{-5}$	
CMD-2 (4 events)	$(37 + 25 + 3_{syst}) \times 10^{-5}$	
CELSIUS-WASA (16 events)	$(43 \pm 13_{stat} \pm 4_{syst}) \times 10^{-5}$	

using $\rho \pi$ **sample** work done together with A. De Santis

<u>Sample</u> <u>selection</u>

#tracks from IP = 1 or 2 tagging tracks checked for flips One and only one cluster pair such that: $t_{cl} - r_{cl}/c < min(2 \text{ ns}, 3\sigma_{t})$ $0.65 < \cos(\gamma \gamma) < 0.85$ $300 < E_{y} < 600 \text{ MeV}$ w/o associated tracks (Official TCLO) self-triggering (on the barrel and $E_{cl} > 70$ MeV) $|m_{\pi 0} - m_{\gamma \gamma}| < 40 \text{ MeV}$

Efficiency on \rho\pi stream ~ 0.09 Sample purity ~ 0.994

After $\gamma\gamma$ selection, kinematic fit to π^0 mass is applied It improves the knowledge of the missing momentum Cluster energy correction applied $E_{eff}=1.014 \times E_{rec}$ (KM342)

Multiplicity has to be considered in efficiency evaluation

$$\varepsilon_{obs} = \frac{2N_2 P(C_2)}{2N_2 P(C_2) + N_1 P(C_1)} = \frac{2\varepsilon_1^2}{2\varepsilon_1^2 + 2\varepsilon_1(1 - \varepsilon_1)} = \varepsilon_1$$

Efficiency can be evaluated separately per charge

Extrapolation to EMC using Spadaro's libraries

Cool! Hm.... I mean.... powerful!

Algorithm for mass assignment

T#1 = Track #1 T#2 = Track #2

1-Look for track pair having the same charge and extrapolation to the calorimeter (both tracks)

T#1 with kinkT#1= π T#2 without kinkT#2=e

2-For all other tracks use Δt_{e} vs Δt_{π} to assign mass

3-Use pair's charge to solve ambiguities

Algorithm for mass assignment

3-Use pair's charge to solve ambiguities

Background studies

Anyway good MC-Data agreement after all cuts (χ^2 , momenta, conv@BP, M $\pi\pi$ ee, angular cuts)

