

Almost final results on $e^+e^- \rightarrow \omega \pi^0$ cross section

A. De Santis & S. Giovannella

RWG meeting 14/05/08

 $\textcircled{} \mathcal{O} \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma$

$\omega\pi^{0} \rightarrow \pi^{0}\pi^{0}\gamma$

- Sample selection \rightarrow 5 clusters
 - neutral (KLOE TCLO km129)
 - in Time Window ($|T_{\gamma}-R_{\gamma}/c| < \min(5\sigma_{t}, 2 \text{ ns})$)
 - $E_v < 7 \text{ MeV}$
 - $-\cos(\theta_{\gamma}) < 0.92 ~(\sim 23^{\circ})$
 - $E\gamma_{1} + E\gamma_{2} < 900 \text{ MeV}$
- Photons pairing:
 - ⁻ 1st kinematic fit (ToF and Energy momentum conservation)
 - parametrization of photon energy resolution (MC)
 - photon pairing into π^0 minimizing a χ^2 defined with the previous resolution
- 2^{nd} kinematic fit (ToF, Energy momentum conservation and π^0 masses)
- $\chi^2(2^{nd})/N_{dof} < 5$ $|\Delta M_{\pi 0}| < 5\sigma_M$

14 May 2008

A. De Santis - RWG

$\omega\pi^{0} \rightarrow \pi^{0}\pi^{0}\gamma$

Signal identification performed requiring 750 < $M\pi\gamma$ < 830 MeV (enlarged with respect to the original analysis $|M_{\pi\gamma} - M_{\omega}| < 3\sigma_{M}$)

Background contribution estimated from MC distribution normalized with scale factor calculated using the MC/Data luminosity ratio (tested on different background enriched distribution).

 $\phi \rightarrow S\gamma$ and $\phi \rightarrow \omega \pi^0$ are assumed uncorrelated (int ~2% KN212)

check numb	Der		Dominant Bac	kground sources
	Background	S/B (no cuts)	S/B (selection)	S/B (bkg rej)
	ηπ0γ	8.5	8.8	18.9
	$\eta\gamma \rightarrow \pi 0\pi 0\pi 0\gamma$	0.1	0.5	3.9
	$\eta\gamma \rightarrow \gamma\gamma\gamma$	0.1	18.8	32.3

$\omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma$: Data-MC comparison (Step 4)

Data-MC comparison after ω identification and residual background subtraction.

Angular distributions

A. De Santis - RWG

$\omega\pi^{0} \rightarrow \pi^{0}\pi^{0}\gamma$: Data-MC comparison (Step 4)

Data-MC comparison after ω identification and residual background subtraction.

Energy distributions

A. De Santis - RWG

14 May 2008

8

14 May 2008

A. De Santis - RWG

$\omega\pi^{0} \rightarrow \pi^{0}\pi^{0}\gamma$: Systematics

	$\sigma_{_0}(nb)$	$\Re(Z)$	$\Im(Z)$	σ' (nb/MeV)	χ^2 / Ndof
Default	0.724(11)	0.011(15)	-0.154(7)	0.0053(5)	13.1/15
χ^2	0.720(11)	0.004(15)	-0.155(7)	0.0054(5)	9.9/15
Μω	0.730(11)	0.005(15)	-0.156(7)	0.0059(5)	8.2/15
Eg	0.727(10)	0.010(15)	-0.155(7)	0.0055(5)	11.0/15
E scale	0.722(10)	0.004(14)	-0.155(7)	0.0054(5)	9.7/15
Bkg	0.724(11)	0.012(14)	-0.157(7)	0.0053(5)	13.9/15
\sqrt{s} scale	0.723(11)	0.022(15)	-0.151(7)	0.0052(5)	12.3/15
ISR tail	0.728(11)	0.010(15)	-0.158(7)	0.0052(5)	12.5/15
Μππ	0.728(10)	0.006(14)	-0.153(7)	0.0053(5)	11.3/15
Interf	0.724(11)	0.019(18)	-0.158(7)	0.0053(6)	13.0/15
	±0.003	±0.006	±0.004	±0.0002	

$O \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Dataset

Integrated luminosity *onpeak* 450 pb⁻¹ Integrated luminosity *offpeak* 150 pb⁻¹

Data:

- drc (DBV-13/14) 01/02
- drc (DBV-24/25) 06

MC sample:

- Signal (DBV-26 LSF=1) 01/02
- mrc (DBV-18 all_phys LSF=0.2) 01/02
- mrc (DVB-26 all_phys LSF=1(2)) 06

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Luminosity

In order to use the correct luminosity for the energy outside the ϕ resonance peak we have used directly vlabha entries.

Energy (MeV)	$\sigma(e^+e^- \rightarrow e^+e^-)_{(vla)}(nb)$
1000	448.40
1010	439.95
1020	431.51
1030	423.06
	From babayaga

We have sliced dataset in bins of 100 keV width.

In the region around the ϕ *peak* we have used these bins.

For the *off-peak* data we have packed them using the luminosity weighted energy.

$\omega\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$: Sample selection

- One vertex at Interaction Point (IP)
- Two tracks connected at vertex
- Four neutral cluster with:
 - E_{clu} grater than 10 MeV
 - ToF compatible with prompt γ
 - $|\cos(\theta)| < 0.93$

12 cm

 γ

Х

8 cm

Ζ

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Background rejection

- $\Delta m_{\pi}/m_{\pi} < 3\sigma$
- bhabha-filter
- η-filter

η-filter as been implemented to reject events due to cluster splitting/machine background.

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: MC energy scale 0.1 E E 0.05 V S 0.05

To analyse the MC energy scale for EMC we have fitted the kinematic fit pulls $(E_{rec} - E_{fit})$ with simple gaussian for different value of fitted energy

A difference in the scale calibration of 2.4% has been found

0.4356E-03

34.72

P1

0

-0.05

-0.1

26

 Data • MC

 \triangle Δ (Data-MC)

0.2399E-01 \pm

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Data/MC tracking efficiency

Tracking efficiency (KM343) has been determined both for on-peak and off-peak data using UFO stream

For on-peak the resulting correction is smaller

Each slice in Pz of the distribution for Pt-Pz has been fitted with:

$$C_{\epsilon} = A \left(1 - \frac{1}{1 + e^{(X - X_{0})/\delta}} \right)$$

In GEANFI (Official release) the radiative correction is fixed with respect to the Center of Mass energy and has a bad shape.

$\omega\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$: ISR Tail

To correct this effect (~5% of the total number of events) we use the ratio of the GEANFI shape and the radiator used in the cross section fit

$\omega\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$: Efficiency

Tracking and vertexing
 efficiency correction included

- Clustering efficiency
 correction curves included
- $\varepsilon_{\rm ANA}$ 0.45 0.4 0.35 1000 1010 1020 103 \sqrt{s} (MeV)

ISR reshape included

FILFO and CV negligible

$\sigma(e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0)(E)$

 $\sigma^{\pm}(\sqrt{s})$ (nb) 8 Efficiency and vlabha • σ^{\pm} luminosity as function of sqrt(s) included 7 Radiative correction included **BES** included 6 5 1000 8.13 ± 0.07 σ 0.077 ± 0.008 $\Re(Z)$ σ -0.130 ± 0.005 $\Im(Z)$ 0.077 ± 0.004

$$(E) = \sigma_0(E) \left| 1 - Z \frac{m_{\phi} \Gamma_{\phi}}{D_{\phi}} \right|^2$$

14 May 2008

A. De Santis - RWG

Fit

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Cross section systematics

Cross section parameters variation as a function of distribution used in the counting fit

Numerical outputs

8.13	0.078	-0.130	0.077
8.14	0.075	-0.133	0.078
8.13	0.080	-0.134	0.075
8.14	0.077	-0.128	0.078
8.13	0.078	-0.133	0.077
8.15	0.075	-0.134	0.078
8.12	0.079	-0.133	0.077
8.15	0.075	-0.134	0.078
8.18	0.083	-0.115	0.077
8.20	0.078	-0.119	0.077
8.14	0.079	-0.123	0.077

14 May 2008

A. De Santis - RWG

 $\mathrm{H}_{\mathrm{fit}}$

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Cross section systematics

Cross section parameters variation as a function of distribution used in the counting fit

#	energy cut	(10/20/50)
---	------------	------------

8.13	0.078	-0.130	0.077
8.12	0.082	-0.129	0.077
7.97	0.089	-0.123	0.078

angular cut (0.93/0.90)

8.13	0.078	-0.130	0.077
8.18	0.077	-0.132	0.076

#	energy	and angle	e (10,0.90	3/20,0.90)
~				

 $\sigma_0 (nb)$

$\omega \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: Cross section systematics

chi2 (50/10/20/30/40/60/70)

8.13	0.078	-0.130	0.077
8.12	0.064	-0.138	0.081
8.12	0.075	-0.129	0.078
8.13	0.076	-0.128	0.077
8.14	0.079	-0.129	0.077
8.14	0.078	-0.131	0.077
8.13	0.078	-0.130	0.078
# track	king efficie	ency (000/1	00/-100/010/0-10/001/00-1)
8.13	0.078	-0.130	0.077
0 1 0	0 077	0 1 0 0	0.077

8.12	0.077	-0.130	0.077
8.15	0.078	-0.129	0.077
8.16	0.077	-0.131	0.077
8.11	0.078	-0.129	0.077
8.16	0.077	-0.131	0.077
8.11	0.078	-0.128	0.077

$\sigma(e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0)(E)$

14 May 2008

ω's BR

Parameter (e^{-})	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0)$
$\overline{\sigma_0^{\pm}}$ (nb)	8.13 ± 0.08
$\Re(Z_{\pm})$	0.077 ± 0.009
$\Im(Z_{\pm})$	$-0.130 \pm 0.0.008$
$\sigma_{\pm}'~(\rm nb/MeV)$	0.077 ± 0.004

Parameter (e^+e^-)	$^- ightarrow \pi^0 \pi^0 \gamma)$
$\sigma_0^{\pi\pi\gamma}$ (nb)	0.724 ± 0.011
$\Re(Z_{\pi\pi\gamma})$	0.011 ± 0.016
$\Im(Z_{\pi\pi\gamma})$	-0.154 ± 0.004
$\sigma'_{\pi\pi\gamma} \ ({\rm nb}/{\rm MeV})$	$0.0053 \pm 0.0.0005$

$$\frac{\sigma_0(\omega \to \pi^0 \gamma)}{\sigma_0(\omega \to \pi^+ \pi^- \pi^0)} = 0.0890 \pm 0.0016$$

$$\frac{\Gamma(\omega \to \pi^0 \gamma)}{\Gamma(\omega \to \pi^+ \pi^- \pi^0)} = 0.0871 \pm 0.0.0015$$

$$BR(\omega \to \pi^{+}\pi^{-}\pi^{0}) = (90.46 \pm 0.18)\%$$
$$BR(\omega \to \pi^{0}\gamma) = (7.87 \pm 0.13)\%$$

ω's BR

$BR(\phi \rightarrow \omega \pi^{0})$

$$BR(\phi \to \omega \pi^0) = \frac{\sigma_0(m_\phi)|Z|^2}{\sigma_\phi}$$

$$BR(\phi \to \omega \pi^0) = (4.70 \pm 0.42) \times 10^{-5}$$

SPARE

$\omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma$: Data-MC comparison (Step 3)

