Status report on $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

S. Giovannella R. Versaci

Tracking efficiencies PID using TOF Background studies Small news Conclusions

using $\rho \pi$ **sample** work done together with A. De Santis

<u>Sample</u> <u>selection</u>

#tracks from IP = 1 or 2 tagging tracks checked for flips One and only one cluster pair such that: $t_{c_1} - r_{c_1}/c < min(2 \text{ ns}, 3\sigma_t)$ $0.65 < \cos(\gamma \gamma) < 0.85$ $300 < E_{y} < 600 \text{ MeV}$ w/o associated tracks (Official TCLO) self-triggering (on the barrel and $E_{cl} > 70$ MeV) $|m_{\pi 0} - m_{\gamma \gamma}| < 40 \text{ MeV}$

Efficiency on $\rho\pi$ *stream* ~ 0.09 *Sample purity* ~ 0.994

After $\gamma\gamma$ selection, kinematic fit to π^0 mass is applied It improves the knowledge of the missing momentum Cluster energy correction applied $E_{eff}=1.014 \times E_{rec}$ (KM342)

Multiplicity has to be considered in efficiency evaluation

$$\varepsilon_{obs} = \frac{2N_2 P(C_2)}{2N_2 P(C_2) + N_1 P(C_1)} = \frac{2\varepsilon_1^2}{2\varepsilon_1^2 + 2\varepsilon_1(1 - \varepsilon_1)} = \varepsilon_1$$

Efficiency can be evaluated separately per charge

Also look for kink (i.e. decay)

Extrapolation to EMC using Spadaro's libraries

Cool! Hm.... I mean.... powerful!

Algorithm for mass assignment

T#1 = Track #1 T#2 = Track #2

1-Look for track pair having the same charge and extrapolation to the calorimeter (both tracks)

T#1 with kink \Rightarrow T#1= π T#2 without kinkT#2=e

2-For all other tracks use Δt_e vs Δt_{π} to assign mass

3-Use pair's charge to solve ambiguities

Algorithm for mass assignment

3-Use pair's charge to solve ambiguities

Background studies

Simona started studying backgrounds Aim: analysis cuts optimization

Background non simulated in all_phys found

Radiative Bhabha? $\pi\pi\gamma$ events? Under investigation

Background studies

Anyway good MC-Data agreement after all cuts (χ^2 , momenta, conv@BP, M $\pi\pi$ ee, angular cuts)

MC all_phys2 and all_phys3 production finished; ntuples already produced

eeg and ppg ntuples produced too
(backgrounds not simulated in all_phys)

Easter Bunny will bring 1 fb⁻¹ of 2005 data reprocessed with dbv-26

Conclusions

- Correction to tracking efficiency
- ✓ PID with TOF
- MC statistics increased
- Additional backgrounds ntuples

- × Accidental cluster veto
- **x** Merge all the new stuff together

Motivations

 η structure, using virtual photon Model comparison (VMD, χ PT) Mod.PhysLett.A17 Test of CP violation: Gao model 1583-1588.2002 Angular asymmetry between ee and $\pi\pi$ planes, A_{CP}, can be due to unconventional CPV mechanism described by a T×V 4 quarks operator with $\Delta s=0$. Within SM constrained by BR($\eta \rightarrow \pi \pi$), using the experimental upper limit: $A_{CP} < 10^{-4}$ using theoretical prediction: $A_{CP} \sim 10^{-15}$ CPV model predicts an upper bound of 10⁻²

BR: theory & experiment

Jarlskog, Pilkuhn 1967	0.0065 × BR($\eta \rightarrow \pi^+\pi^-\gamma$)
Jsing PDG06 (30.5 ± 0.7) × 10 ⁻⁵	$(25.7 \pm 1.3) \times 10^{-5} \text{ Using}_{\text{CLEO} '07}$
Picciotto, Richardson 1993	$(32 \pm 3) \times 10^{-5}$
Faessler et al. 2000	36 × 10 ⁻⁵
Borasoy, Nissler 2007	$(29.9^{+0.6}_{-0.9}) \times 10^{-5}$
CMD-2 (4 events)	$(37 + 25_{-18 \text{ stat}} \pm 3_{\text{syst}}) \times 10^{-5}$
CELSIUS-WASA (16 events)	$(43 \pm 13_{stat} \pm 4_{syst}) \times 10^{-5}$
	Stat Syst

Data sample

As for now, not used

79 pb⁻¹ data 2002

512 pb⁻¹ data 2004

110 pb⁻¹ data 2005

 $46 \times 10^3 \text{ pb}^{-1}$ MC signal only

529 pb⁻¹ MC all_phys 2004

1194 pb⁻¹ MC all_phys 2005

Using mrc stream ETA4C tag

More data reprocessing with DBV>26 is needed Ongoing

More MC productions allphys2: completed allphys3: completed