Status report on $\pi^{+} \pi^{-} \gamma / \mu^{+} \mu^{-} \gamma$ at Small Angle

F. Nguyen

Ф Decays 30-05-07

Where we are

Filfo from the prescaled events - syst. error is negligible
Trigger
Solid - compared with 2001 and DC trigger

Background

MC shapes fitted to data - addressed today $\quad(\checkmark)$
$\mathbf{M}_{\text {trek, }} M_{\text {miss }} \quad \begin{aligned} & \text { from MC re-weighted and smeared } \\ & \text { from data }\end{aligned}(\checkmark)$
Vertex
difference data-MC of $\boldsymbol{O}(\mathbf{1 \%})$ - addressed today

Tracking difference data-MC of $O(0.7 \%)$ - addressed today $\quad(\checkmark)$

Acceptance
data-MC comparison for θ_{π} - addressed today
unshifting $\left(\mathrm{Q}^{2}{ }_{+-} \rightarrow \mathrm{Q}_{\gamma^{*}}^{2}\right)$ (pions), \quad ESR \rightarrow ISR (muons)
Luminosity VLAB. Eff. Cross section for 2002 - New BABAYAGA
(\checkmark)
Radiator Only for absolute measurement, (cross check with muons)

Vertex efficiency outline

1. definition of the control samples and of the vertex efficiency
2. data-MC comparison of the criteria in 1.
3. efficiency from data and MC for $\pi \pi \gamma$ and $\mu \mu \gamma$

- $\pi \tau \gamma \mathrm{MC}\left(\mathrm{O}(20) \mathrm{pb}^{-1}\right.$ ppgphok3)
- $\mu \mu \gamma \mathrm{MC}$ ($\mathrm{O}(20) \mathrm{pb}^{-1}$ pho5mmg)
-drc data ($100 \mathrm{pb}^{-1}$, preselected with NEW ppgtag: $\mathrm{m}_{\text {trk }}$, $\mathrm{m}_{\text {miss }}$ cuts with track momenta at the PCA

Definitions

The vtx efficiency, $\varepsilon_{V T X}=\frac{\# \text { of events with a good vtx }}{\# \text { evts with (at least) a good pair of trks }}$

- 3 conditions (in cascade) define a "good" pair of tracks: . $\mathrm{LO}=$ both tracks of opposite charge must satisfy usual acceptance cuts:

$$
\begin{aligned}
& \rho_{F . H .}<50 \mathrm{~cm} ; \rho_{P C A}<8 \mathrm{~cm} ; \mid z_{P C A}<7 \mathrm{~cm} \\
& 50<\vartheta_{\pi / \mu}<130 ; \vartheta_{\Sigma}<15\left(\vartheta_{\Sigma}>165\right)
\end{aligned}
$$

$. \mathrm{L1}=$ (at least 1 track is not an e)

> Logrl>0 and mlp
> $(-1<\operatorname{mlp}<0.2$ for $\pi ; 0.7<\operatorname{mlp}<2$ for $\mu)$
. $\mathrm{L} 2=\mathrm{m}_{\text {trk }}$ and ellipse cut
For μ : $80 \mathrm{MeV}<\mathrm{m}_{\text {TRK }}<115 \mathrm{MeV}$;
For $\pi: 130 \mathrm{MeV}<\mathrm{m}_{\text {TRK }}<220 \mathrm{MeV}$;

MLP performance on data

MLP = MultiLayer
Perceptron
developed for improving μ / π separation, (not used in the selection)

separation,
(not used in th
selection)

L_{2} performance on $\pi \pi \gamma$

missing mass pea

Comparison among the 3 criteria

$\pi \pi \gamma$ and $\mu \mu \gamma v t x$ efficiencies from MC

L0,L1,L2 vertex efficiencies are

 compared to check for possible bias... it does not seem the case!
Data/MC comparison for vertex

Ratio $\pi \pi \gamma / \mu \mu \gamma$ for data and MC

Checks on ppgtag: $m_{\text {trk }}$ and $m_{\text {miss }}$ cuts

1. in the selection we cut on variables defined with vtx momenta, (for vertex efficiency... obviously not!!!), what about cutting at the level of pca momenta?

Check for pions from MC

Entries 20753690
Entries 20775253

$M_{\text {an }}{ }^{2}$ tagtype $0+3$

Standard Selection performed with:

- no FILFO
- no analysis cuts on $\mathrm{M}_{\text {Trk }}, \mathrm{M}_{\text {Miss }}$

Check for muons from MC

no bias at all for muons, slight (~ 0.5\%) for pions @ small M values

Updates on background fit

1. P. Beltrame's corrections on both data an MC are applied to the $m_{\text {trk }}$ shapes to check for differences, no significant change aside from $\mathrm{p}+\mathrm{p}-\mathrm{pO}$
2. found an effect in the $p+p-p 0 M C$ events, smaller weights (< 1.5), slight net effect

Effects of P. Beltrame on the bckgr

small difference in weights for $\pi \pi \pi$:

Better 3π weights

- When correcting MC momenta, one should recreate PPGTAG condition with the corrected momenta This was not possible before for 3π, since the MC-sample for 3π was already filtered by PPGTAG
\rightarrow Redid 3π sample incl. w.resp. to PPGTAG, redid background fit - weights for 3π contr. change.

Systematic uncertainty in the polar angle of the track @ small angle

1. apply corrections to reconstructed momenta in MC to reproduce $m_{\text {trk }}$ peak from data (smearing+offset...)
2. estimate polar angle resolution as the RMS of $\theta_{\text {rec }}-\theta_{\text {gen }}$ and take it as the standard deviation $=\sigma$
3. vary $\theta_{\text {cut }}$ and take the fractional difference of the spectra (after the standard selection) at 1σ as the systematic uncertainty

Check mc-data differences in resolution

we check the effects on the spectrum squeezing/stretching the opening cone and estimate the relative difference wrt the chosen cut (similarly to what we did for the Lumi, but there the cluster polar angle is used... $\sigma \sim 2^{\circ}$, Kloe Note 202)

Resolutions in θ_{π} : a comparison

$\mathrm{x} 10{ }^{2}$

LEGENDA:

$$
\begin{gathered}
\text { rmc }=\text { no smearing at all } \\
\text { bva }=\text { Bini-Valeriani } \\
\text { bel }=\text { from P. Beltrame }
\end{gathered}
$$

same RMS (resolution) btw doing nothing and Paolo's recipe same MEAN (offset) btw doing nothing and Bini-Valeriani
a RMS $\sim 0.3^{\circ}$ is taken as the conservative resolution in θ

Relative differences: data (I)

$$
1-\frac{N_{i}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}\left(50^{\circ}<\theta\right)}
$$

relative difference btw the $M_{\pi \pi}$ spectrum evaluated with $\theta_{\text {cut }}$ and the reference 50°
all spectra after all standard small angle cuts (except for polar angle...)
low $M_{\pi \pi}$ difference can reach 4% at 1σ, and also the high $M_{\pi \pi}$ region can be offset by 1%

Relative differences: data (II)

$$
1-\frac{N_{i}\left(\theta_{c u t}<\theta\right)}{N_{i}\left(50^{\circ}<\theta\right)}
$$

similar conclusions take place:
low $M_{\pi \pi}$ slope can reach 4\% at 1σ, and also the high $M_{\pi \pi}$ region can be offset by 1%
does MC reproduce
these trends?

Relative differences: MC-BV (I)

$$
1-\frac{N_{i}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}\left(50^{\circ}<\theta\right)}
$$

it seems yes!!!

low $M_{\pi \pi}$ slope can reach 4\% at 1σ, and also the high $M_{\pi \pi}$ region can be offset by 1%

Relative differences: MC-BV (II)

$$
1-\frac{N_{i}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}\left(50^{o}<\theta\right)}
$$

similar conclusions take place:
low $M_{\pi \pi}$ slope can reach 4\% at 1σ, and also the high $M_{\pi \pi}$ region can be offset by 1%

Relative differences: MC-P.B. (I)

$$
1-\frac{N_{i}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}\left(50^{\circ}<\theta\right)}
$$

Paolo Beltrame confirms

data as well as MC
Bini-Valeriani trends

Relative differences: MC-P.B. (II)

$$
1-\frac{N_{i}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}\left(50^{\circ}<\theta\right)}
$$

let's be quantitative!!!

Systematic uncertainty: data-BV (I)

$$
\frac{N_{i}^{M C}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{M C}\left(50^{o}<\theta\right)}-\frac{N_{i}^{\text {data }}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{\text {data }}\left(50^{o}<\theta\right)}
$$

systematic error < 0.2\% at 1σ

 for the low cut

... zooming the previous one

$\frac{N_{i}^{M C}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{M C}\left(50^{o}<\theta\right)}-\frac{N_{i}^{\text {data }}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{\text {data }}\left(50^{o}<\theta\right)}$

for the low cut

Systematic uncertainty: data-BV (II)

$\frac{N_{i}^{M C}\left(\theta_{c u t}<\theta\right)}{N_{i}^{M C}\left(50^{\circ}<\theta\right)}-\frac{N_{i}^{\text {data }}\left(\theta_{c u t}<\theta\right)}{N_{i}^{\text {data }}\left(50^{\circ}<\theta\right)}$

systematic error < 0.2% at 1σ also for the high cut

...zooming the previous one

$\frac{N_{i}^{M C}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{M C}\left(50^{o}<\theta\right)}-\frac{N_{i}^{\text {data }}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{\text {data }}\left(50^{o}<\theta\right)}$

Systematic uncertainty: data-P.B. (I)

...zooming the previous one

Systematic uncertainty: data-P.B. (II)

$\frac{N_{i}^{M C}\left(\theta_{c u t}<\theta\right)}{N_{i}^{M C}\left(50^{\circ}<\theta\right)}-\frac{N_{i}^{\text {data }}\left(\theta_{c u t}<\theta\right)}{N_{i}^{\text {data }}\left(50^{\circ}<\theta\right)}$

 also for the high cut
despite my fear, the small
angle obtains similar findings of the large angle

...zooming the previous one

$\frac{N_{i}^{M C}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{M C}\left(50^{o}<\theta\right)}-\frac{N_{i}^{\text {data }}\left(\theta_{\text {cut }}<\theta\right)}{N_{i}^{\text {data }}\left(50^{o}<\theta\right)}$

Tracking efficiency: data control samples

Selection of the data control samples from RAW:
$\pi^{+} \pi^{-} \pi^{0}$

1) 2 and only 2 clusters with E>30 MeV and $29 \mathrm{~cm} / \mathrm{ns}<\mathrm{R} / \mathrm{t}<32 \mathrm{~cm} / \mathrm{ns}$
2) $\left|M_{\gamma \gamma}-m_{\pi 0}\right|<20 \mathrm{MeV}$
3) a tagging track recognized as a pion by the Likelihood, extrapolating back to the IP $\pi^{+} \pi^{-}$
4) 1 or 2 clusters in the barrel
with $5 \mathrm{~ns}<\mathrm{t}<8 \mathrm{~ns}$
5) a tagging track recognized as a pion by
the Likelihood, extrapolating back to the IP,

and with $\left|\mathrm{P}_{\mathrm{CM}}-490\right|<5 \mathrm{MeV}$

Tracking efficiency: the candidate track

The candidate track must satisfy the following cuts (on data):

1) charge must be opposite wrt tagging track
2) first hit must have $\rho_{\mathrm{FH}}<\mathbf{5 0} \mathrm{cm}$
3) the point of closest approach (PCA) of backward track extrapolation must have $\rho_{\text {PCA }}<8 \mathrm{~cm}$ and $\left|\mathrm{z}_{\text {PCA }}\right|<7 \mathrm{~cm}$
4) χ^{2} algorithm to assign the track based on the conservation of momenta known from BMOM, the tagging track (and the π^{0} for the $1^{\text {st }}$ sample)

From MC:

take the KINE track and look for the DTFS track of the same sign having the same 2) and 3) features

Data-MC comparison

$$
\text { black }=\text { MC, white }=\text { data }
$$

the 450-475 MeV reflects the gap due to merging the 2 control samples

Fit to the ratio data/MC

the agreement is on the level of 0.6-0.7\% (validated by a good $\chi^{2} / n d f$) in the region covered by $\pi^{+} \pi^{-} \pi^{0}$ events
$\pi^{+} \pi^{-}$events (4 bins) worsen a little the agreement at high θ values and enforce that at low θ values

Fit to the ratio data/MC

the agreement is on the level of 0.6-0.7\% (validated by a good $\chi^{2} / n d f$) in the region covered by $\pi^{+} \pi^{-} \pi^{0}$ events
$\pi^{+} \pi^{-}$events (4 bins) worsen a little the agreement at high θ values and confirm that at low θ values

Efficiency vs π momentu

39

Efficiency vs π momentu

Outlook and plans for tracking

quoted numbers show the qualitative stability of the procedure, they will be used for correcting MC tracking efficiency after:

1) a little more $\pi \pi \gamma$ MC-data systematic checks
2) evaluating $\mu \mu \gamma$ tracking efficiency and comparing with $\pi \pi \gamma$

Conclusions

1. efficiencies have been evaluated with refined/different methods wrt published analysis
2. the results are stable, and when compared, similar to the 2001
3. detailed studies of the systematics are going on, their outcomes with F_{π} will be presented @ Capri

Back up slides

MC Comparison $\pi \pi \gamma-\mu \mu \gamma$

MC Comparison $\pi \pi \gamma-\mu \mu \gamma$

