

Status report on $\pi^+\pi^-\gamma / \mu^+\mu^-\gamma$ at Small Angle

F. Nguyen

 Φ Decays 30-05-07

- 1. definition of the control samples and of the vertex efficiency
- 2. data-MC comparison of the criteria in 1.
- 3. efficiency from data and MC for $\pi\pi\gamma$ and $\mu\mu\gamma$

ππγ MC (O(20) pb⁻¹ ppgphok3)
μμγ MC (O(20) pb⁻¹ pho5mmg)
drc data (100 pb⁻¹, preselected with NEW ppgtag: m_{trk}, m_{miss} cuts with track momenta at the PCA

Definitions

-The vtx efficiency, ϵ_{VTX} =

of events with a good vtx# evts with (at least) a good pair of trks

- 3 conditions (in cascade) define a "good" pair of tracks:

•L0 = **both** tracks of opposite charge must satisfy usual acceptance cuts:

MLP performance on data

MLP = MultiLayer Perceptron developed for improving μ/π separation, (not used in the selection)

L_2 performance on $\pi\pi\gamma$

Comparison among the 3 criteria

$\pi\pi\gamma$ and $\mu\mu\gamma$ vtx efficiencies from MC

L0,L1,L2 vertex efficiencies are compared to check for possible bias... it does not seem the case!

 in the selection we cut on variables defined with vtx momenta, (for vertex efficiency... obviously not!!!), what about cutting at the level of pca momenta?

Check for pions from MC

Standard Selection performed with:

- no FILFO
- no analysis cuts on M_{Trk}, M_{Miss}

Check for muons from MC

no bias at all for muons, slight (~ 0.5%) for pions @ small M values

- 1. P. Beltrame's corrections on both data an MC are applied to the m_{trk} shapes to check for differences, no significant change aside from p+p-pO
- found an effect in the p+p-p0 MC events, smaller weights (< 1.5), slight net effect

Better 3π weights

• When correcting MC momenta, one should recreate PPGTAG condition with the corrected momenta This was not possible before for 3π , since the MC-sample for 3π was already filtered by PPGTAG \rightarrow Redid 3π sample incl. w.resp. to PPGTAG, redid background fit - weights for 3π contr. change.

Systematic uncertainty in the polar angle of the track @ small angle

- 1. apply corrections to reconstructed momenta in MC to reproduce m_{trk} peak from data (smearing+offset...)
- 2. estimate polar angle resolution as the RMS of θ_{rec} - θ_{gen} and take it as the standard deviation = σ
- 3. vary θ_{cut} and take the fractional difference of the spectra (after the standard selection) at 1 σ as the systematic uncertainty

Check mc-data differences in resolution

we check the effects on the spectrum squeezing/stretching the opening cone and estimate the relative difference <u>wrt the</u> <u>chosen cut</u> (similarly to what we did for the Lumi, but there the cluster polar angle is used... $\sigma \sim 2^{\circ}$, Kloe Note 202)

Resolutions in θ_{π} : a comparison

LEGENDA:

rmc = no smearing at all

bva = Bini-Valeriani

bel = from P. Beltrame

same RMS (resolution) btw doing nothing and Paolo's recipe same MEAN (offset) btw doing nothing and Bini-Valeriani

a RMS ~ 0.3° is taken as the conservative resolution in θ

Relative differences: data (I)

Relative differences: data (II)

$$1 - \frac{N_i(\theta_{cut} < \theta)}{N_i(50^\circ < \theta)}$$

similar conclusions take place:

low $M_{\pi\pi}$ slope can reach 4% at 1 σ , and also the high $M_{\pi\pi}$ region can be offset by 1%

does MC reproduce these trends?

Relative differences: MC-BV (I)

 $1 - \frac{N_i(\theta_{cut} < \theta)}{N_i(50^o < \theta)}$

it seems yes!!!

low $M_{\pi\pi}$ slope can reach 4% at 1 σ , and also the high $M_{\pi\pi}$ region can be offset by 1%

Relative differences: MC-BV (II)

$$1 - \frac{N_i(\theta_{cut} < \theta)}{N_i(50^\circ < \theta)}$$

similar conclusions take place:

low $M_{\pi\pi}$ slope can reach 4% at 1 σ , and also the high $M_{\pi\pi}$ region can be offset by 1%

Relative differences: MC-P.B. (I)

Relative differences: MC-P.B. (II)

$$1 - \frac{N_i(\theta_{cut} < \theta)}{N_i(50^o < \theta)}$$

Systematic uncertainty: data-BV (I)

... zooming the previous one

Systematic uncertainty: data-BV (II)

... zooming the previous one

... zooming the previous one

Systematic uncertainty: data-P.B. (II)

... zooming the previous one

Tracking efficiency: data control samples

Selection of the data control samples from RAW:

$\pi^+\pi^-\pi^0$

1) 2 and only 2 clusters with E>30 MeV and

29 cm/ns < R/t < 32 cm/ns

2) $|M_{\gamma\gamma} - m_{\pi0}| < 20 \text{ MeV}$

3) a tagging track recognized as a pion by the Likelihood, extrapolating back to the IP $\pi^+\pi^-$

1) 1 or 2 clusters in the barrel

with 5 ns < t < 8 ns

2) a tagging track recognized as a pion by the Likelihood, extrapolating back to the IP, and with $|p_{CM}$ -490| < 5 MeV

Tracking efficiency: the candidate track

The *candidate track* must satisfy the following cuts (on data):

- 1) charge must be opposite wrt tagging track
- 2) first hit must have $\rho_{\rm FH}$ < 50 cm
- 3) the point of closest approach (PCA) of backward track extrapolation must have $\rho_{PCA} < 8 \text{ cm}$ and $|z_{PCA}| < 7 \text{ cm}$
- 4) χ^2 algorithm to assign the track based on the conservation of momenta known from BMOM, the tagging track (and the π^0 for the 1st sample)

From MC:

take the KINE track and look for the DTFS track of the same sign having the same 2) and 3) features

quoted numbers show the qualitative stability of the procedure, they will be used for correcting MC tracking efficiency after:

- 1) a little more $\pi\pi\gamma$ MC-data systematic checks
- 2) evaluating $\mu\mu\gamma$ tracking efficiency and comparing with $\pi\pi\gamma$

- 1. efficiencies have been evaluated with refined/different methods wrt published analysis
- the results are stable, and when compared, similar to the 2001
- 3. detailed studies of the systematics are going on, their outcomes with F_{π} will be presented @ Capri

Back up slides

