Systematics on η mass measurement

Biagio Di Micco

The results actually presented at conferences have been blessed more than one year ago;

Until now we preferred to not give further preliminary result to give directly the final result;

In this way, large part of the work on systematic could not be shown until now.

We are blessing all this work and we can discuss if give another preliminary result;

Main part of these plots come from KLOE Memo n. 333

The most precise

 measurements differ by 8σ
GEM result:

$\mathrm{M}_{\eta}=(547.311 \pm 0.028 \pm 0.032) \mathrm{MeV} / \mathrm{c}^{2}$ Reaction used: $\mathrm{p}+\mathrm{d} \rightarrow{ }^{3} \mathrm{He}+\eta$

High discrepancy with NA48!
Using $\eta \rightarrow 3 \pi^{0}$ from $\pi^{-}+\mathrm{p} \rightarrow \eta+\mathrm{n}$:
$\mathrm{M}_{\mathrm{n}}=(547.843 \pm 0.030 \pm 0.041) \mathrm{MeV} / \mathrm{c}^{2}$
[A, Lai et al., Phys. Lett. B 533 (2002) 196]

GEM is in good agreement with old measurements

$$
\begin{aligned}
& \phi \rightarrow \eta \gamma(\eta \rightarrow \gamma \gamma) \longrightarrow \eta^{0} \text { mass } \quad 3 \gamma \text { final state } \\
& \phi \rightarrow \pi^{0} \gamma\left(\pi^{0} \rightarrow \gamma \gamma\right) \longrightarrow \pi^{0} \text { mass }
\end{aligned} \quad
$$

A kinemati fit is performed imposing energy-momentum conservation and time of flight of photons the energy momentum conservation imposes 4 constraints
the energies of the three photons are over constrained and determined by the angles through the kinematic fit.

$$
\chi^{2}<35
$$

Selection

At least 3 photons with the requirements:

$$
\begin{aligned}
|\mathrm{t}-\mathrm{r} / \mathrm{c}| & <\min \left(5 \sigma_{\mathrm{t}^{2}} 2 \mathrm{~ns}\right) \\
50^{\circ}<\theta_{\gamma} & =130^{\circ}
\end{aligned}
$$

the kinematic fit is performed on all combination and that with the smallest χ^{2} is retained.

constraints equation

- energy-momentum conservation
- t-r/c of clusters

measured quantities

- cluster position $\mathrm{x}, \mathrm{y}, \mathrm{z}$ • $\sqrt{ } \mathrm{s}$
- cluster energies
- cluster times
before kin. fit

- momentum
- vertex position J
from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ $86000 \mathrm{ev} . / \mathrm{run}$
after kin. fit

the kinematic fit squeeze the distribution because of the very good angular resolution.

Biagio Di Micco

Dalitz plot

The photons are ordered according their energies

$$
\mathrm{E}_{1}<\mathrm{E}_{2}<\mathrm{E}_{3}
$$

DATA

$\chi^{2}<35$

Accepted region
Biagio Di Micco

Fit to the invariant mass distribution
double gaussian for π^{0}
single gaussian for η

MC

Biagio Di Micco

Cuts

Dalitz plot cut
χ^{2}
photon angle dependence
azimuthal and polar angle;
vertex position
vertex position determination;
DC - EMC global misalignment
calorimeter energy response
energy scale knowledge
deviation from linearity
fit distortion
sqrt(s)

Dalitz cut systematic

The cut on the Dalitz produces a small distortion on the invariant mass distribution that shifts the measured mass.

The distortion is null in the limit of infinite resolution and can be easily corrected using MC.

The effect is evaluated using a toy MC that just generate η decays with a gaussian mass spectrum with σ (DATA)

Biagio Di Micco

Dalitz cut correction - slope

cut	MC(547.78)	DATA	DATA corr
$0.73-\mathrm{x}$	547,756	547,710	547,734
$0.58-0.5 \mathrm{x}$	547,799	547,742	547,723
0.43	547,842	547,778	547,716
$0.28+0.5 \mathrm{x}$	547,881	547,820	547,719
$0.13+\mathrm{x}$	547,915	547,875	547,740

Biagio Di Micco

cut	MC(547.78)	DATA
$0.73-x$	547,756	547,810
$0.72-x$	547,753	547,821
$0.71-x$	547,748	547,826
$0.70-x$	547,744	547,820
$0.69-x$	547,736	547,813

11 keV systematic rms of the points without correction.

Slope cut

Biagio Di Micco

	$m_{\eta}(\mathrm{keV})$	$m_{\pi}(\mathrm{keV})$	m_{η} / m_{π}
χ^{2} cut	0.7	4	1.3×10^{-4}

Angular dependence

The 3 photons are boosted back in the ϕ rest frame. The normal to the plane of the 3 photons is evaluated.

Biagio Di Micco

Vertex position and DC-EMC alignment η mass measurement

A sample of $\pi^{+} \pi^{-} \gamma$ has been used to determine shifts in the vertex position and displacement between DC and EMC.

The $\pi^{+} \pi^{-}$vertex is compared with that coming form $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$.

The tracks are extrapolated from the vertex to the calorimeter, and compared with the cluster position.

Biagio Di Micco

Mis-determination of the I.P

We keep the vertex from the tracking algorithm and compare it with the ee values event by event

2 normal dist.

2 normal dist.

1 normal distr.

Biagio Di Micco

The standard deviation respect to the zero value is taken as systematic

Biagio Di Micco

Biagio Di Micco

Global systematic

Systematic due to the vertex position (cm).							
	2001			2002			
coord.	rms I.P	$\begin{aligned} & \text { DC-calo } \\ & \text { al. } \pi^{+} \end{aligned}$	$\begin{gathered} \text { DC-calo } \\ \text { al. } \pi^{-} \end{gathered}$	rms I.P	DC-calo al. π^{+}	DC-calo al. π^{-}	tot. syst.
x	0.010	0.04	0.034	0.014	0.062	0.056	0.056
y	0.006	0.12	0.08	0.008	0.13	0.088	0.088
z	0.046	0.16	0.17	0.061	0.22	0.28	0.22

Uncertainty on the mass values (fractional error)

	$m_{\eta}\left(\times 10^{-6}\right)$	$m_{\pi}\left(\times 10^{-6}\right)$	$m_{\eta} / m_{\pi}\left(\times 10^{-6}\right)$
V_{X}	1.8	15	15
V_{Y}	7	22	27
V_{Z}	4	37	35
overall	8	45	47

Biagio Di Micco

Energy response

The same $\pi \pi \gamma$ sample can be used to check the energy response of the calorimeter, comparing the g energy evaluated from the $\pi \pi$ tracks with the cluster energy.
linearity deviation are 2% at most.

$$
\mathrm{E}_{\text {clu }}=0.994 \mathrm{xE}_{\text {true }}-0.2 \mathrm{MeV}
$$

Applying these correction we find: energy scale $\delta \mathrm{m} / \mathrm{m}=8 \times 10^{-6}$ (4 keV) lin. dev. $\quad \delta \mathrm{m} / \mathrm{m}=7 \times 10^{-6}(4 \mathrm{keV})$

Different approach using $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}\left(\pi^{0} \rightarrow \gamma \gamma\right)$

The same result in the overlapping region
(different γ energy allowed by the

Biagio Di Micco

Global check of the method

To check possible distortions due to the algorithm itself.

$$
\begin{aligned}
& \mathrm{M}_{\text {fit }}=\mathrm{M}_{\text {input }}+(41 \pm 3) \mathrm{keV} / \mathrm{c}^{2} \\
& \chi^{2} / \mathrm{n} . \mathrm{d} . \mathrm{f}=0.32
\end{aligned}
$$

$50 \mathrm{pb}^{-1}$ for each point
linearity is perfect.
A correction for the constant term is needed.

Correction source

The correction comes from a distortion of the energy distribution respect to the true value

DUMMY

GEANFI
 out from the blessing
(Efit - Etrue)/ σ -(Efit-Etrue)/ σ
(smearing of the true MC informations)
 (smearing of the trae
informations)

We can compute

$$
M_{\gamma \gamma}=\sqrt{2 E_{1} E_{2}(1-\cos \theta)} \quad \begin{aligned}
& \text { Smearing according the } \\
& \text { previous distribution. }
\end{aligned}
$$

$$
\Delta \mathrm{m}_{\eta} \sim 30 \mathrm{keV}
$$

Unluckily the residuals are not sensitive to these distortions.

DATA MC-DUMMY GEANFI

Biagio Di Micco

Systematic summary

systematic effect	$m_{\eta}(\mathrm{keV})$	$m_{\pi^{0}}(\mathrm{keV})$	$m_{\eta} / m_{\pi} \times 10^{-5}$
Calorimeter energy constants	4	1	5.6
Calorimeter not linearity	4	11	31
Vertex position	4	6	19
Angular uniformity ϕ	15	12	37
Angular uniformity θ	10	44	120
Dalitz slope + fit dist.	26	33	81
Dalitz plot cut (constant)	12	1.9	10
χ^{2} cut	0.7	4	13
overall	35	58	154

Biagio Di Micco

Fit quality (data sample divided in 8 periods)

Biagio Di Micco

Biagio Di Micco

The mass shows an high sensitivity to the sqrt(s) value.

The absolute scale of the $\sqrt{ }$ s is obtained fitting the cross section $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{L}}$ (ϕ line shape).

The ratio $\mathrm{m}_{\phi}(\mathrm{CMD}-2) / \mathrm{m}_{\phi}(\mathrm{KLOE})$ is used to set the absolute $\sqrt{ } \mathrm{s}$ scale.

	value	correction	final value
m_{η}	547825	-52	547773
$m_{\pi^{0}}$	134965	-67	134898
$m_{\eta} / m_{\pi^{0}}$	4.05901	+0.00164	4.06065

sqrt(s) not affected estimate:

$$
\begin{aligned}
& \frac{m_{\eta}}{m_{\pi^{0}}}=4.06065 \pm 0.00034 \text { (stat.) } \pm 0.00154 \text { (syst.) } \\
& \left(m_{\pi^{0}}=1349766 \pm 0.6 \mathrm{keV}\right) \\
& m_{\eta}=548093 \pm 46 \pm 207 \mathrm{keV}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m_{\eta}}{m_{\phi}}=0.537386 \pm 0.000007 \text { (stat.) } \pm 0.000034(\text { syst. }) \pm 0.000006\left(m_{\phi} \quad \text { stat. }\right) \\
& \frac{m_{\pi^{0}}}{m_{\phi}}=0.132340 \pm 0.000011 \text { (stat.) } \pm 0.000057 \text { (syst.) } \pm 0.000001 \text { (} m_{\phi} \text { stat.) } \\
& m_{\pi^{0}}=134918 \pm 11 \pm 58 \pm 1 \pm 1.4(\text { CMD2 } \quad \text { stat. }) \pm 3(\text { CMD2 } \quad \text { syst. }) \mathrm{keV} \quad \Delta_{\mathrm{PDG}}=1 \sigma \\
& m_{\eta}=547856 \pm 7 \pm 35 \pm 6 \pm 6(\mathrm{CMD} 2 \text { stat.) } \pm 14(\mathrm{CMD} 2 \text { syst.) }
\end{aligned}
$$

Biagio Di Micco

$434 \mathrm{pb}^{-1}$

Using the Br evaluated on 2002 data.
½ 2005 statistics $600 \mathrm{pb}^{-1}$
bkg

$$
\operatorname{Br}\left(\eta \rightarrow \pi^{0} \gamma \gamma\right)=\left(8.4 \pm 2.7_{\text {sat }} \pm 1.4_{\text {syss }}\right) \times 10^{-5}
$$

$$
\mathrm{m}\left(\eta^{\mathrm{m}(4)} \pi^{0} \gamma \gamma\right)
$$

MC shape from rad04

Results and systematics

the energy calibration has been determined using $\pi^{+} \pi \gamma$ and $\mathrm{e}^{+} \mathrm{e}^{-} \gamma$ events, the calorimeter calibration is know at better than 2% $\delta \mathrm{m} / \mathrm{m}=11 \times 10^{-6}(6 \mathrm{keV})$ on the η mass.

Systematic due to the vertex position determination have been also evaluated, the sqrt(s) is calibrated by fitting the ϕ line shape.

$$
\begin{aligned}
& \mathrm{m}(\phi)=1019.483 \pm 0.011 \pm 0.025 \\
& \mathrm{CMD}-2 \text { Phys. Lett. B578, } 285 \\
& \mathbf{M}\left(\pi^{0}\right) \quad=\left(\mathbf{1 3 4 9 9 0} \pm \mathbf{6}_{\text {stat }} \pm 3 \mathbf{3 0}_{\text {syst }}\right) \mathbf{k e V} \\
& \mathbf{M}\left(\pi^{0}\right)_{\text {PDG }}=(\mathbf{1 3 4 9 7 6 . 6} \pm \mathbf{0 . 6}) \mathbf{k e V}
\end{aligned}
$$

$$
M(\eta)=\left(547822 \pm 5_{\text {stat }} \pm 69_{\text {syst }}\right) \text { keV }
$$

NA48 compatibility: 0.24σ
Independent measurement with the $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
decay mode in progrees:

$$
\mathrm{m}_{\mathrm{n}}=547.95 \pm 0.15 \mathrm{MeV} / \mathrm{c}^{2}
$$

(very "preliminary fully in agreement with the $\gamma \gamma$ channel)

Results and systematics

Systematic due to the vertex position determination have been also evaluated, the sqrt(s) is calibrated by fitting the ϕ line shape.

$$
\begin{aligned}
& \mathrm{m}(\phi)=1019.483 \pm 0.011 \pm 0.025 \\
& \mathrm{CMD}-2 \text { Phys. Lett. B578, } 285 \\
& \mathbf{M}\left(\pi^{0}\right) \quad=\left(\mathbf{1 3 4 9 9 0} \pm \mathbf{6}_{\text {stat }} \pm \mathbf{3 0}_{\text {syst }}\right) \mathbf{k e V} \\
& \mathbf{M}\left(\pi^{0}\right)_{\text {PDG }}=(\mathbf{1 3 4 9 7 6 . 6} \pm \mathbf{0 . 6}) \mathbf{k e V} \\
& \mathbf{M}(\eta)=\left(\mathbf{5 4 7 8 2 2} \pm 5_{\text {stat }} \pm \mathbf{6 9} \mathbf{s y s t}\right) \mathbf{k e V}
\end{aligned}
$$

Systematics dominated by \sqrt{s} knowledge
NA48 compatibility: 0.24σ
Cross check with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay mode:

$$
\mathrm{m}_{\eta}=547.95 \pm 0.15 \mathrm{MeV} / \mathrm{c}^{2}
$$

