Status of the η mass measurement

B. Di Micco

12 Dec 2006

• Evaluation of the systematic error for the π^0 mass and the ratio of the two η/π^0 masses;

 Selection of a sample with a stable value of the sqrt(s);

Computation of the final result.

Vertex position systematic η

The uncertainty on the vertex is determined by using the $\pi\pi\gamma$ sample at the end the systematic uncertainty is given by:

12 Dec 2006

Vertex position systematic π^{0}

12 Dec 2006

Vertex position systematic η/π^0

	$m_{\eta} (\times 10^{-6})$	$m_{\pi} (\times 10^{-6})$	$m_{\eta}/m_{\pi}~(\times 10^{-6})$
V_X	1.8	15	15
V_Y	7	22	27
V_Z	4	37	35
overall	8	45	47

12 Dec 2006

Energy calibration and linearity

	m_η (×10 °)	m_{π} (×10 °)	$m_{\eta}/m_{\pi}~(\times 10^{-5})$
calibration constants (a,b)	7	7	14
linearity deviation (c,d,e)	7	81	76

12 Dec 2006

Angular uniformity

12 Dec 2006

Polar angle and χ^2 **cut**

12 Dec 2006

Dalitz cut

12 Dec 2006

π^0 case and constant cut

12 Dec 2006

Global check of the fit

	$M_{rec} - M_{input}$		
	MC GEANFI (Δ_1)	TOY MC PAR (Δ_{dalmc})	TOY DATA PAR $(\Delta_{dalDATA})$
m_{η}	41 keV	-47 keV	-36.4 keV
m_{π^0}	65 keV	-6 keV	-3.8 keV

$$M_{\eta} = M_{\eta \text{mes}} - (\Delta_1 - \Delta_{\text{dalmc}} + \Delta_{\text{dalDATA}}) = M_{\eta \text{mes}} - 41 keV - 47 keV + 36.4 = M_{\eta \text{mes}} - 52 keV$$
$$M_{\pi^0} = M_{\pi^0 \text{mes}} - 65 - 6 + 3.8 keV = M_{\pi^0} - 67 keV$$

 $\frac{1}{2}$ of the correction taken as systematic error.

12 Dec 2006

Systematic table

systematic effect	$m_{\eta} \; (\text{keV})$	m_{π^0} (keV)	$m_\eta/m_{pi^0} \times 10^{-5}$
Calorimeter energy constants	4	1	5.6
Calorimeter not linearity	4	11	31
Vertex position	4	6	19
Angular uniformity ϕ	15	12	37
Angular uniformity θ	10	44	120
Dalitz slope + global check	26	33	81
Dalitz plot cut (constant)	12	1.9	10
χ^2 cut	0.7	4	13
overall	35	58	154

 $\frac{1}{2}$ of the correction

12 Dec 2006

DATA sample cleaning

The measurement has an high sensitivity to the sqrt(s), to select high quality runs we require: $L_{int} > 100 \text{ nb}^{-1} \Delta_{sqrt(s)} < 50 \text{ keV}$ (to protect against BMOM failures), elimination of the fast variation periods by hand, runs with bad trigger or bad time calibration dropped.)

12 Dec 2006

Fit quality (data sample divided into 8 periods)

Fit results

12 Dec 2006

Corrections and final results

KeV

500

	value	correction	final value
m_{η}	547825	-52	547773
m_{π^0}	134965	-67	134898
m_η/m_{π^0}	4.05901	+0.00164	4.06065

$$\frac{m_{\eta}}{m_{\pi^0}} = 4.06065 \pm 0.00034 \text{(stat.)} \pm 0.00154 \text{(syst.)}$$
$$(m_{\pi^0} = 1349766 \pm 0.6 \text{ keV})$$
$$m_{\eta} = 548093 \pm 46 \pm 207 \text{ keV}$$
$$1019.329 \pm 0.011 \text{ MeV}$$

1 (0.5 متناه x10⁻¹ مربق syst. variation x10⁻¹ -1 m_{ϕ} 250 0 From scan -250 -500 -1 0.25 -0.5 -0.25 0 0.5 sqrt(s) MeV KeV m_{η} $= 0.537386 \pm 0.000007 (\text{stat.}) \pm 0.000034 (\text{syst.}) \pm 0.000006 (m_{\phi})$ stat.) m π^{0} syst. variation x10⁻³ 0 2.0-2 2.0-3 10⁻³ 500 m_{ϕ} 250 0 $\frac{m_{\pi^0}}{m_{\pi^0}} = 0.132340 \pm 0.000011 \text{(stat.)} \pm 0.000057 \text{(syst.)} \pm 0.000001 (m_{\phi})$ stat.) -250 m_{ϕ} -500 -1 -0.5 -0.25 0.25 0.5 0 sqrt(s) MeV

12 Dec 2006

1

We can use the CMD-2 value for the mass, or the PDG average:

 m_{ϕ} (CMD-2) = 1019.483 ± 0.011 ± 0.025 m_{ϕ} (PDG06) = 1019.460 ± 0.019

 $m_{\pi^0} = 134918 \pm 11 \pm 58 \pm 1 \pm 1.4$ (CMD2 stat.) ± 3 (CMD2 syst.) keV $\Delta_{PDG} = 1\sigma$ $m_{\eta} = 547856 \pm 7 \pm 35 \pm 6 \pm 6$ (CMD2 stat.) ± 14 (CMD2 syst.) $m_{\eta} = 547844 \pm 7 \pm 35 \pm 6 \pm 11$ (PDG syst.) keV

> $m_\eta = 547.843 \pm 0.030 \pm 0.041$ MeV NA48 $m_\eta = 547.311 \pm 0.028_{\rm stat} \pm 0.032_{\rm syst}$ MeV GEM

12 Dec 2006