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Abstract

An integrated luminosity of 410 pb−1 of KLOE data, corresponding to ∼ 17
million of η events from the Φ → ηγ radiative decay, have been analyzed to measure
the η mass using the decay η → γγ. The signal is searched in events with 3 photons in
the final state. To this aim we perform a kinematic fit imposing energy momentum
conservation on the 3 γ system. As shown in the following, the η mass value is
insensitive to the calorimeter energy calibration and the systematic error on the
measurement is dominated by the knowledge of the I.P position and of the sqrt(s).
The decay channel φ → π0γ, π0 → γγ is used as a crosscheck of the method,
comparing the π0 mass obtained by this method with that reported in the PDG[7].
The result obtained is mη = 547.82 ± 0.016stat. ± 0.050syst., this represent today
best measurement of the η mass. The value is in agreement with the NA48[3] and in
disagreement with the GEM measurement [4] and the experiments performed before
NA48.

1 Introduction

The η mass measurement has been performed using dfferent techiniques by several
experiments in the history [7]. It was measured using hadron machine with different
technique and several production reactions.
The most recent measurements start from 1974 in the Rutherford Laboratory that
used the reaction π−p → nneutrals.
The neutron is detected and the measurement is based on the determination of the
threshold of the cross section π−p → ηn. The n is compelled in a kinematic region
such that the missing mass of the neutral system is given by the momentum of the
π− beam missing mass determination of the neutrals system. The value obtained
is mη = 547.45 ± 0.25 MeV/c2[1]. In this measurement no estimate of systematic
effects has been computed, because the η mass measurement was not the main
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target of the experiment and it was just used as a guideline for detector resolution
studies. A later measurement at SATURNE [2] used the threshold determination of
the reaction dp →3 Heη. The beam momentum at threshold was used to determine
the η mass, and two reactions were needed in order to calibrate the beam momentum
dp →3 Heπ+ and dp → pd, dp → pd, they measure mη = 547.30 ± 0.15 MeV/c2.
The systematic effect considered include uncertainties on the target thickness and
the structure of the dependence of the beam momentum as a function of time.
Systematic effects due to the spectrometer performances (non linearity, absolute
calibration and so on) are not mentioned in the article.

Again with threshold determination of the reaction γp → ηp the η mass was
measured at the MAMI[5] accelerator with the TAPS experiment. The photons
were produced by the brehmstrhalung of electrons on a radiator foils and the energy
measured as the difference between the going out electron, measured in a spectrom-
eter, and the incoming electron energy. The measurement rely on the determination
of the η cross section measurement. The only effect considered in the systematic is
the uncertainty on the e− momentum due to the spectrometer calibration. No effect
due to soft photons emission in the bremstrahlung process and detector efficiency are
considered in the systematic. They measured mη = (547.12 ± 0.06 ± 0.25)MeV/c2.

The first very precise measurement was performed by the NA48 collaboration.
The measurement was performed using the η → 3π0 decay. Small sensitvity to the
calorimeter absolute scale was shown because the invariant mass was built using ge-
ometric positions of the clusters. Systematic due to detector non linearity, geometry
distortion and detector response were carefully determined. Crosschecks were done
using the η → γγ decay and the same technique was used to determine the KL mass
from KL → 3π0. The NA48 experiment measured mη = 547.843± 0.030± 0.041[3],
a value that is 0.6 MeV/c2 higher than the average od the previous measurements
and more than 5 σ away.

This situation triggered a new high precision measurement at the COSY facility
by the GEM collaboration[4]. In this case, a missing mass technique was used to
determine the η mass in the reaction p + d →3 He + η. The spectrometer was
calibrated using other two reactions. Because the spectrometer setting was changed
during the calibration procedure, it is not clear the validity of the calibration. The
working point of the spectrometer was in fact changed. Also the systematic study
doesn’t take into account non linearity of the apparatus and doesn’t discuss the
systematic linked to the knowledge of the calibration parameters.A very important
effect, that is the variation of the target thickness with the time, is not taken into
account in the systematic error. The final result is mη = 547.311±0.028stat±0.032syst

MeV/c2.
This last measurement is in disagreement with the NA48 measurement and agrees

with the old experiment. The present situation is summarized in fig. 1.
The average of the not NA48 measurement is 547.298 ± 0.040 MeV/c2. The

discrepancy with NA48 is at 10 σ. Despite to the fact that the NA48 measurement
seem more robust from the experimental point of view for the several cross checks
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Figure 1: Eta mass measurement, see text for the references. The continuous line
and the average has been computed using the PDG scheme [7].
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performed and the agrrement of the KL mass to the PDG value, the experimental
situation now seems to invalidate the NA48 measurement. For this reason it is
interesting that KLOE gives a measurement of the η mass in order to clarify the
situation. Triggered by this problem at MAMI there is an ongoing experiment on the
η mass measurement with an improved detector, that has a much better resolution
on the measurement of the outgoing electron energy. [6].

The pourpouse of this work is to measure the η mass at 10 KeV level, in order
to give a further measurement of this quantity to disentangle between the two last
most precise measurements.

2 The method.

At KLOE a large number of η mesons is produced through the radiative φ decay
φ → ηγ. One of the main decay mode of the η meson is η → γγ. So the decay φ →
ηγ produces three clusters in the calorimeter. In 2001+2002 the KLOE collected
luminosity is about 450 pb−1 corresponding to 19 millions of η mesons and 7 millions
of η → γγ decays. The aim of this work is to measure the η mass at 2× 10−5 level.
This level of precision is unachievable with the calorimeter energy measurement
due to the uncertainty in the calorimeter energy calibration. In fig. 2 the total
energy of three photons events φ → η, π0γ, e+e− → γγγ as a function of the run
number is reported. The distribution on the right shows the total energy of the
three most energetic photons on time impinging on the barrel in the angular region
50◦ < θγ < 130◦. The peak at the φ mass is due to events coming from the φ decay
into three photons, while the peak at a lower mass value is due to events with more
than three photons where some photons are out of the angular range.

The plot shows a miscalibration of about 6 MeV on the total energy. So the
miscalibration is at 6× 10−3 level. Therefore the invariant mass of the two photons
coming from the η cannot be used as it is to measure the η mass at 2 × 10−5.
Furthermore the calorimeter energy resolution is not enough to achieve the target.

In fig. 3 the invariant mass of 2 photons is reported for all combinations of two
photons. The σ of the peak is 81 MeV/c2, so we would need about 60 millions of
events to reach the statistical precision of 10 keV.

The precision of the method is based on the fact that in a 3 photons system the
energy momentum conservation impose 4 constraints to the photon kinematic.
The kinematic of the system is determined by the 3 energies of the 3 photons and by
the 6 angles. Using the 4 constraints it is possible to express the energy in function
of the 6 angles. This work is done by a kinematic fit with the following constraints:

• Total quadrimomentum of the three photons: Px, Py, Pz, Etot;

• ti − ri/c = 0 for each cluster i;

The procedure used for the fit is the same used for the η → 3γ upper limit deter-
mination [8]. The total quadrimomentum is determined by the BMOM, BPOS
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Figure 2: left Φ mass built from the energy of the three photons (mφ =
√

E2

tot − P 2
x

as a function of the run period. Each point is about 10 pb−1 taken starting from
the run on the abscissa; right distribution used to evaluate the invariant mass, the
fit is done using a double gaussian model for the signal and the background.

algorithm [9] that studies the bhabha events to determine the mean vertex position
Xv, Yv, Zv and the Φ boost.

The constraints on the time of the clusters, that is compatible with the time
needed by a photon to travel the distance between the interaction point (i.p. in the
following) and the cluster position, improves the resolution on the z coordinate and
therefore on the angle of the photons.

In fig. 4 is the resolution σz as a function of the kine energy of the phtons.
This distribution has been obtained by evaluating the difference between the recon-
structed z of the cluster and the z position of the extrapolated point starting from
the i.p. of the direction o the photons. An improvement of about 40% is obtained.

The effect of the kinematic fit can be appreciated in fig. 5. On the left side the
combiantorial mγγ distribution before the kineamtic fit is plotted, while on the right
the same distribution after the kinematic fit is plotted. The huge improvement in
the mass determination is evident.

3 Signal selection

The selection of the signal is very simple. Being the statistic not an issue we can
require high quality events in order to reduce all systematic effects. After the usual
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Figure 3: m2γ mass built using the energy and the cluster position, without any
constraint on the total quadrimomentum.
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Figure 4: Resolution on the z coordinate of the photons as a function of the kine
MC energy. The open circle is before the kinematic fit the full triangle is after the
kinematic fit with t − r/c constraint.
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Figure 5: (left) mη distribution built before the kinematic fit procedure, (right)
the same after the kinematic fit.

FILFO,EVCL filter for the radiative stream we require at least three clusters whose
time and position is compatible with the photon velocity:

|t − r/c| < min(5σt, 2ns)

where σt is parametrized according the formula:

σt =
5.4%

√

E(GeV)
⊕ 140ps

with angle 50◦θγ < 150◦.
Let’s indicate with Npre the number of clusters that survive this preselection.

For each combination of three clusters of the total
(

N

3

)

we compute the sum of the
energy of the clusters Etot, and we select the combinations with Etot > 650MeV.
To these the kinematic fit procedure is applied.

The loose cut is applied to reduce the number of combination on which the
kinematic fit works, being an iterative procedure working on the linearization of
the non linear constraints it is heavily cpu consuming. The selected combination
are ordered by the χ2 and the combination with the smallest χ2 is retained as an
effective three photons events.

A cut of χ2 < 35 is applied to reject background. The events rejected by this cut
are events coming from events with Nγ > 3 or from events with Nγ = 3 but where
one of the photons imps with an angle smaller than 50◦ on the calorimeter. In fig.
6 (left) the χ2 distribution of the data and of the MC events with 3γ (φ → π0γ,
φ → ηγ) is shown.
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Figure 6: (left) χ2 distribution for data and MC (3γ sampe), the cut used is shown;
(right) Scatter plot of Etot versus χ2 on the DATA sample. The line shown refers
to the cut used to select a clean sample of η → γγ continuous line, and π0 → γγ
dashed line.

In fig.6 (right) the scatter plot of Etot as a function of th χ2 is shown. It is
evident that, given the cut χ2 < 35, the cut at 650 MeV is completely ineffective
on the signal selection. The best way to show the mass distribution for the signal
and the background, is to plot the dalitz plot of the 3 photons. Let’s order the 3
γ according their energies E1 < E2 < E3, and let’s build the Dalitz plot using the
variables m212, m2

13, the invariant masses of the pairs 1-2 and 1-3 respectively. In
fig.7 these plots are shown for the data before and after the cut on the χ2 < 35.

Plotting mγ1γ2 variable we obtain the plot shown in fig.8 left. Two very narrow
peaks are visible, the peak at the π0 mass, due to the φ → π0γ,π0 → γγ and the
peak at the η mass coming from the decay chain φ → ηγ,η → γγ. Under both peaks
there is a big background. In the case of the η it is only due to the combinatorial
background, that is when the photons 1-2 don’t come both from the η decay but
one of the from the φ decay.
This can be easily deduced by looking at fig.7. In fact being

m2
12 + m2

13 + m2
13 = m2

φ,

the line that cross the center of the histogram is due to the cases when the photons
1-3 come from the η decay. In the π0 case there is not misidentification background
because the photons coming from the π0 are always the least energetic ones. In the
π0 case the background is given by the η → 2γ sample and by the e+e− → γγ with an
acidental cluster that is evident in the upper part of the dalitz plot. The uncertainty
on the background shape and the correlation betwwen the background parameters
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Figure 7: Dalitz plot distributions before (left) and after (right) the application of
the χ2 < 35 cut.

fit results
χ2

0/n.d.f Prob(χ2 > χ2
0) m (MeV) σ1 (MeV) σ2 (MeV)

η 154/161 57 % 547.710± 0.014 2.14 ± 0.012 -
π0 255/257 43 % 134.94 ± 0.02 1.78 ± 0.05 4.07 ± 0.19

Table 1: Fit parameters for the π0 and η mass distribution. In the π0 case the sigma
of the two gaussians are shown.

and the central value of the peak, spoils the precision of the measurement. For this
reason it is important to clean the sample as much as possible,

In fig.8 the distribution of mγ1γ2 is reported before (left) and after (right) the
cut indicated with the continuous line in fig.7.

To determine the π0 mass a stronger cut is needed in order to reduce the back-
ground at an optimum level (fig. 9), it is shown with the dashed line in fig. 7 (right).
The peak at the η mass value of fig. 8 has been fitted with a gaussian distribution
using a MINUIT fit procedure. The result of the fit has been reported in fig. 10 for
60 pb−1 in the run range 17874-20600, just as an example. While a double gaussian
distribution is needed to reproduce the π0 shape. The result of the fit are reported
in table 1. It is possible to see that the statistical error using 60 pb−1 of data is
about 14 keV (3 × 10−5). The potential high precision of the measurement implies
the needed of a carefull study of all systematic effects that could spoil this level of
precision.
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Figure 10: Invariant mass distribution for the η → γγ decay (left) and for the π0γγ
decay (right). The fitted function are shown. The small gaussian in the π0 case is
the core gaussian.

4 Systematic error evaluation.

The sources of systematic error against several effects has been studied. The ef-
fects considered are: calorimeter absolute energy calibration, energy response non
linearity, cluster position calibration and non linearity in φ and z coordinate, mean
interaction vertex knowledge,

√
s knowledge, χ2 cut effect, angular cut effect, global

disallineament between the Drift Chamber and the calorimeter. To evaluate the sys-
tematic effect we have used the π+,π−,γ sample used in the hadronic cross section
measurement at large angle. This sample is used to estimate systematic on ver-
tex position determination, φ, z and E global calibration and non-linearity, global
disallineament between the Drift Chamber and the calorimeter.

4.1 Vertex position systematic evaluation.

The vertex position is determined run by run by the physmon program using bhabha
events. To evaluate a systematic on this measurement we use the vertex position
reconstructed in the π+ π− γ sample. The 2001 data period has been divided into ...
pb−1 of runs. for eac group of run the quantity (Xππγ − XBPOS), (Yπ piγ − YBPOS),
(Zππγ −ZBPOS) are put in an histogram. The fit to a double gaussian with the same
mean should give a mean value of zero if any not common systematic between the
bhabha sample and the π+π−γ sample is seen.

In fig. 11 we report the mean of the two gaussian as a function of the run number
at the beginning of the run bunches for 2001 and 2002 data taking. The uncertainity
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Figure 11: Distribution of the difference in the vertex position between the π+π−γ
sample and the BPOS value. Top 2001 DATA, bottom 2002 DATA.

13



Systematic due to the vertex position (cm).
2001 2002

coord. rms I.P DC-calo DC-calo rms I.P DC-calo DC-calo tot. syst.
al. π+ al. π− al. π+ al. π−

x 0.010 0.04 0.034 0.014 0.062 0.056 0.056
y 0.006 0.12 0.08 0.008 0.13 0.088 0.088
z 0.046 0.16 0.17 0.061 0.22 0.28 0.22

Table 2: Corrections to the vertex position and associated systematic error.

due to the vertex position is estimated by evaluating the rms of these points respect
to the expected value of zero. The rms is asssumed as the systematic associated to
this determination. In tab. 2 these errors are shown.

A possible common systematic between the ππγ sample and the bhabha one can
be due to a possoible displacement, not corrected in the reconstruction, between the
calorimeter respect to the drift chamber. The vertex measured by with the charged
track is of course linked to the drift chamber reference frame. In order to check
the DC-calorimeter allineament we use the extrapolation of the tracks of the π+π−γ
sample to the calorimeter. The tracks are extrapolated from the vertex in the DC to
the calorimeter assuming a constant magnetic field of 0.5188T along the z direction.
The point of nearest approach to the cluster centroid is computed, where the cluster
is that associated by the track to cluster algorithm. Any displacement between the
DC and the barrel can be evaluated by studing the distribution of the residuals
Xclu −Xextr, Yclu − Yextr, Zclu −Zextr. The average of the residuals on several group
of runs are plotted as a function of the first run of the period in fig.13 for the 2001
and 2002 data taking. As one can see, while the x position is well centered the y
position has is shifted of about 1 mm while the z position has a time behaviour as
a function of the run number. For the pourpose of this work we don’t apply any
correction and estimate just a systematic error on this distribution. The systematic
error is evaluated as the standard deviation respect to the expected value, 0, of all
the distributions shown in the plot. The values are reported in tab. 2.
Both the uncertainity on the vertex position and the displacement between the
calorimeter and the drift chamber have the same effect on the measurement. They
change the angle between the two photons coming from the η decay and so they have
to be accounted together. The two effect are completely uncorrelated, so we sum in
quadrature this effects. Between the π+ and π− data we take the smallest one, in
fact any increment can only be due to the particle type and so to the method used
to evaluate the displacement and not to the real knowledge of the displacement. To
be conservative for the DC-Calo alineament systematuc we take the values of 2002
because the uncertainty is higher. The cumulative effect is evaluated in the last
column of tab. 2. To evaluate the effect of these uncertainties on the value of the
η mass we proceed in the following way: we apply run by run a systematic shift of 1
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Figure 12: Mean of the residuals of the extrapolated track position respect the
cluster centroid for π+ and π− in the year 2001.
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Figure 13: Mean of the residuals of the extrapolated track position respect the
cluster centroid for π+ and π− in the year 2002.
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mη (×10−6) mπ (×10−6) mη/mπ (×10−6)
VX 1.8 15 15
VY 7 22 27
VZ 4 37 35

overall 8 45 47

Table 3: Fractional systematic error for different quantities related to the η mass
measurement.
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Figure 14: The η mass fractional shift as a function of the vertex position shift.

σ on the vertex position as evaluated on 2002 DATA. This because the 2002 DATA
present a larger systematic error. We repeat the analysis and exstract the value of
the η mass. The difference respect to the central value gives the upper and lower
1 σ systematic error. In fig. 16 we report the shift of the η mass as a function of
the shift on the vertex position. From this figure we extract the contribute to the
systematic error for the π0, the η mass and the ratio mπ0/mη. The value obtained
are shown in tab. 3

4.2 Energy linearity.

To estabilish a systematic error on the knowledge of the linearity response of the
calorimeter, we use the π+π−γ sample. For this pourpose we evaluate the missing
energy from the

√
s and the two charged pions momenta and we compare it with

the energy of the prompt clusters in the calorimeter (the prompt cluster definition
has been given in sec. ??). In fig. 17 the scatter plot od the cluster energy as a
function of the missing energy has been shown. It is evident the presence of two
regions, one is the “linerity” region, that is the region used to evaluate the linearity,
the other one is given by clusters with small energies, that is accidental clusters or
splitted clusters. The two regions are well separated, so the simple cut shown in
the figure is able to give a clean sample for linearity studies. The study has been
done merging the whole 2001 and 2002 statistic, the two samples have been study
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Figure 15: The π0 mass fractional shift as a function of the vertex position shift.
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Figure 16: The m(η)/m(π0) ratio as a function of the vertex position shift.
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Figure 17: Scatter plot of the prompt cluster energy Eclu versus the missing energy
of the π+,π−,γ events.

in indipendent way also but no difference has been observed.
The two dimensional histograms shown in fig.17 are sliced for energy regions of

... MeV. Each slice is fit with a gaussian distribution and the mean value and the
error are used to estimate the systematic. In fig. 18 the linearity curve is shown for
2001 and 2002 data. The curve is fit using a linear approximation Eclu = a+b·Emiss,
the value of a and b are shown in table 4.

To study the calorimeter non linearity we proceed in the following way. We build
the quantity:

Eclu − (a + b ∗ Etrue)

Etrue

≈ Eclu − (a + b ∗ Emiss)

Emiss

(1)

Linearity response parameters
a (MeV) b c d (MeV−1) e (MeV−2)

-0.2 0.994 -2.1 0.019 −4.2 × 10−5

Table 4: Fitted parameters of the linearity curve.

19



Emiss

E
c
l
u

MeV

M
e
V

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500
Emiss

(
E
c
l
u
-
b
*
E m

i
s
s-
a
)
/
E m

i
s
s

MeV

%

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

50 100 150 200 250 300 350 400 450 500

Figure 18: left Linearity response, the fit function is overimposed; right Fractional
alinearity according the formula (1). The value of the parameters are shown in tab.
4.

this quantity is exactly 0 for a perfect linearity response. Small alinearity can be
considered by parametrizing the deviation from zero of this quantity as:

Eclu − (a + b ∗ Emiss)

Emiss

= c + d ∗ Emiss + e ∗ E2
miss (2)

This take into account a possible quadratic and cubic term in the energy response.
The value of c, d, e are used to parametrize the alinearities. In fig. ?? we show the
quantity (1) for the π+π−γ sample together with a fit to a second order polynomial.
The alinearity at 2% level shown in figure, can be, in principle, due to the chosen
control sample, such as the presence of π+, π−π0 contamination or two photons
processes. Anyway, for the puorpose of this study, we can conservative assume that
the shown alinearity is due to the real alinearity of the calorimeter and use the
alinearity curve to estimate a systematic effect on the η mass value.
Applying the linearity coefficient of table 4 the result of the mass shift of 8 × 10−6,
this value is assumed as systematic error, while applying the coefficients on the
alinearity the shift is of 7 × 10−6.

5 Systematic checks.

Other systematic effect can be due to the not uniformity of the calorimeter response
for the cluster position determination. To check this effect we evaluate the η mass
as a function of the azimutal and polar angle of a vector orthogonal to the 3γ plane.
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This vector is determined using the vector product between the two most energetic
photon momenta.
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Figure 19: Azimuthal angle.
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Figure 21: Polar angle.
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Figure 22: Polar angle.
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