Preliminary results of KL fit to the Dalitz-plot of $\pi^0\pi^0\gamma$ final state

S.Miscetti, S.Giovannella

Situation of the $\pi^0\pi^0\gamma$ final state:

- status of KLOE memos
- preliminary results for KL on the Dalitz-plot

KLOE PHIDEC meeting LNF 16-Feb-2006

Kloe memo on $\pi^0\pi^0\gamma$ visible cross-section vs sqrt(s)

- We have x-checked the fits vs sqrt(s) to determine the absolute shift of the energy scale. A mistake found! The data table called "no-shift" was indeed shifted of 150 keV
- □ All tables and fit redone.
- □ No major changes on the results just rounding of numbers!
- □ However final conclusion changed: we have to shift the energy scale of 150 keV to get the right Mφ
- New version of KLOE Memo done and re-submitted to referees. We are waiting for comments before changing it on KLOE doc-page

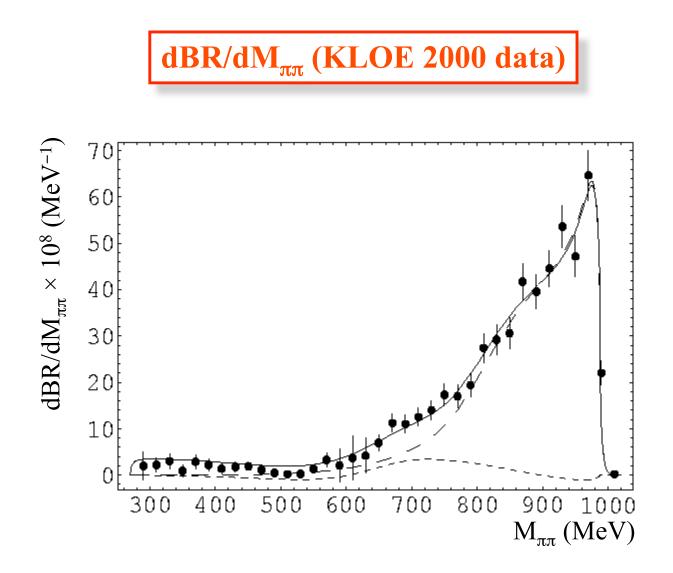
Improved KL parametrization for the $\pi^0\pi^0\gamma$

➤ Insertion of a KK phase:

N.N.Achasov, private communication NOW PUBLISHED HEP-PH 0512047

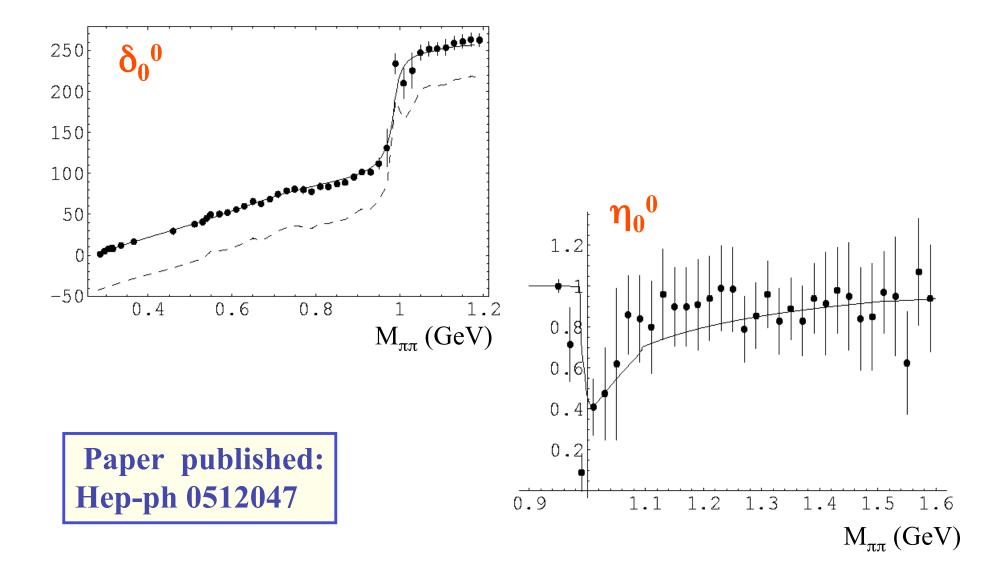
$$\tan \delta_B^{K\bar{K}} = \sqrt{m^2 - 4m_{K^+}^2} f_K(m^2) = \frac{\sqrt{m^2 - 4m_{K^+}^2}}{\Lambda_K} \operatorname{atan} \frac{m_2^2 - m^2}{m_0^2}$$

Beyond to its contribution in the interference term, IT CHANGES THE SCALAR TERM AMPLITUDE IN THE $M_{\pi\pi} < 2M_{K}^{+}$ REGION


$$M_{sig} = \sqrt{\frac{1 - f_K(m^2)\sqrt{4m_{K^+}^2 - m^2}}{1 + f_K(m^2)\sqrt{4m_{K^+}^2 - m^2}}}g(m)e^{i\delta_B^{\pi\pi}} \left((\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}\right)\sum_{R,R'}g_{RK^+K^-}G_{RR'}^{-1}g_{R'\pi^0\pi^0}g(m)e^{i\delta_B^{\pi\pi}}\left((\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}\right)\sum_{R,R'}g_{RK^+K^-}G_{RR'}^{-1}g_{R'\pi^0}g(m)e^{i\delta_B^{\pi\pi}}g(m)e^{i\delta_B^{\pi\pi}}\left((\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}\right)\sum_{R,R'}g_{RK^+K^-}G_{RR'}^{-1}g_{R'\pi^0}g(m)e^{i\delta_B^{\pi\pi}}g(m)e^{i\delta_B^{$$

> New parametrization of the $\pi\pi$ phase:

$$\tan(\delta_B^{\pi\pi}) = -\frac{p_\pi}{2m_\pi} \Big(b_0 - b_1 \frac{p_\pi^2}{(2m_\pi)^2} + b_2 \frac{p_\pi^4}{(2m_\pi)^4} \Big) \frac{1}{1 + p_\pi^2 / \Lambda^2}$$
$$p_\pi = \sqrt{m^2 - 4m_{\pi^+}^2}$$


new KL parametrization on old KLOE data (I)

Achasov-Kiselev: combined fit to KLOE 2000 + $\pi\pi$ scattering data

new KL parametrization on old KLOE data (II)

Achasov-Kiselev: combined fit to KLOE 2000 + $\pi\pi$ scattering data

Theory advantages of the new parametrization

- \checkmark Able to reproduce Mass-spectrum, $\delta^0{}_0$ and inelasticity
- ✓ Sum of overlapping resonances with the correct propagator matrix
- ✓ A lot of theory restrictions applied:
 - The $\pi\pi$ scattering length a_0^0 fixed to the recent calculation of Colangelo

- In the $\pi\pi$ scattering amplitude the Adler zero in T($\pi\pi$ -> $\pi\pi$) is granted in the region below the threshold ($0 < m_{\pi\pi}^2 < 4M_{\pi}^2$)

- A $\sigma(600)$ meson is needed to obtain a good fit

K-loop fit results: $f_0 + \sigma$ (600) (the six "variants")

In their paper, N. Ach. et al. used six possible variants for the fit.

- In the first two (A1,A2) they tried different coupling signs between g_ $\sigma\pi\pi$ and g_f₀ $\pi\pi$. Adler zero in T($\pi\pi$ ->KK) to M_{π^2}
- In the third and fourth fit (A3,A4) they tried different values of the inelasticity + for variety they fixed the Adler-Zero in T($\pi\pi$ ->KK) to M_{π^2}/2.

In these first four cases the couplings of $g_\sigma KK$ are small but not negligible: (0.55,-0.93,0.43,-1.1) GeV respectively.

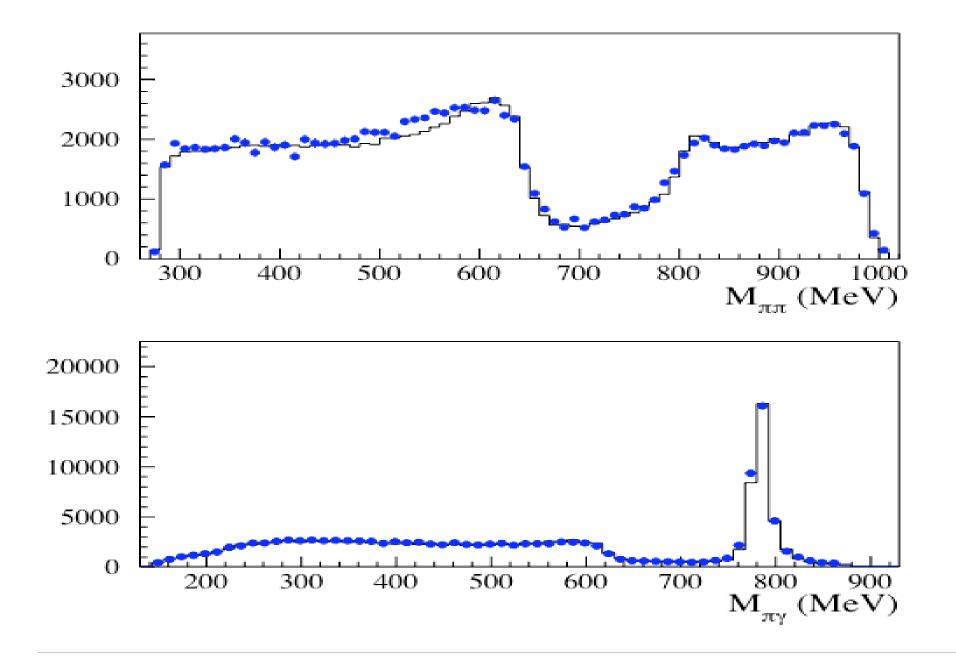
- In variants five and six (A5, A6) they use the "naïve" 4-quark model expectations for the sigma i.e. g_σKK -> (0.13,-0.035)GeV
- In all cases the mass of σ is between 450-700 MeV and its width very large (see Table)

KL fit results: $f_0 + \sigma$ (the six "variants"): Sy term

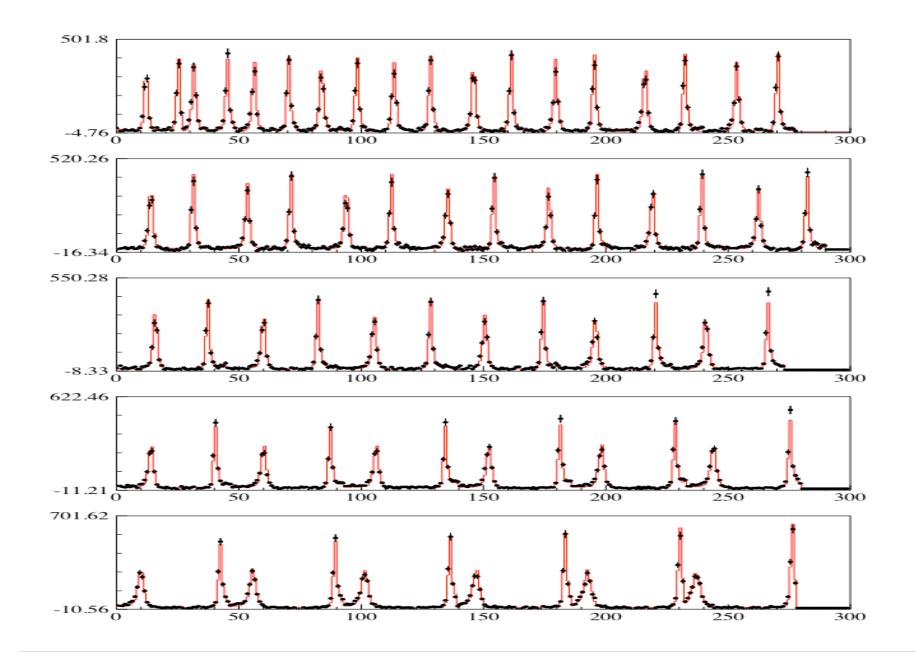
	Fit	M_{f_0} (MeV)	$g_{f_0K^+K^-}$ (GeV)	$g_{f_0\pi^+\pi^-}$ (GeV)	R_{f_0}	$M, \Gamma(\sigma)$ (MeV)	χ^2	$P(\chi^2)$
FIXED	1	976.8 ± 0.3	3.76 ± 0.04	-1.43 ± 0.01	6.91 ± 0.18	462,286	2754	0.145
Μ,Γσ	2 3	986.2 ± 0.3 985.2 ± 0.2	3.87 ± 0.08 4.92 ± 0.06	-2.03 ± 0.02 -1.92 ± 0.01	3.63 ± 0.17 6.57 ± 0.17	485,240 472,320	2792 2809	0.058
	4 5	$\frac{987.3 \pm 0.1}{987.0 \pm 0.2}$	3.84 ± 0.11 2.61 ± 0.05	-2.00 ± 0.02 -0.95 ± 0.01	3.69 ± 0.22 7.55 ± 0.33	543,290 709,493	2855 2970	0.008 5×10^{-5}
	6	983.5 ± 0.4	2.52 ± 0.04	-0.82 ± 0.01	9.44 ± 0.38	693,442	2981	3×10^{-5}
	Fit 1	$\frac{M_{f_0}}{974.8 \pm 0.6}$	$g_{f_0K^+K^-}$ 3.49 ± 0.08	$g_{f_0\pi^+\pi^-}$ -1.29 ± 0.04	R_{f_0} 7.32 ± 0.56	M_σ 551 ± 15	$\frac{\chi^2}{2734}$	$P(\chi^2)$ 0.208
Free	2 3	986.1 ± 0.2 984.8 ± 0.4	3.75 ± 0.07 4.65 ± 0.12	-1.99 ± 0.02 -1.81 ± 0.03	3.55 ± 0.15 6.60 ± 0.40	527 ± 13 534 ± 13	2786 2797	0.066 0.049
Μσ	4	987.3 ± 0.1 982.7 ± 0.4	4.06 ± 0.08 2.42 ± 0.03	-2.07 ± 0.02 -0.95 ± 0.01	3.85 ± 0.17 6.49 ± 0.21	$\begin{array}{c} 475 \pm 25 \\ 406 \pm 15 \end{array}$	2847 2817	0.010
	6	980.2 ± 0.4	2.42 ± 0.03 2.45 ± 0.04	-0.89 ± 0.01	7.58 ± 0.30	400 ± 10 403 ± 61	2788	0.062

✓ We exclude the last two variants with σ(600) fixed to the "naïve" 4-q model
✓ No improvements observed when leaving the sigma mass free. Last two variants improve but Mass of sigma lowers of 300 MeV!

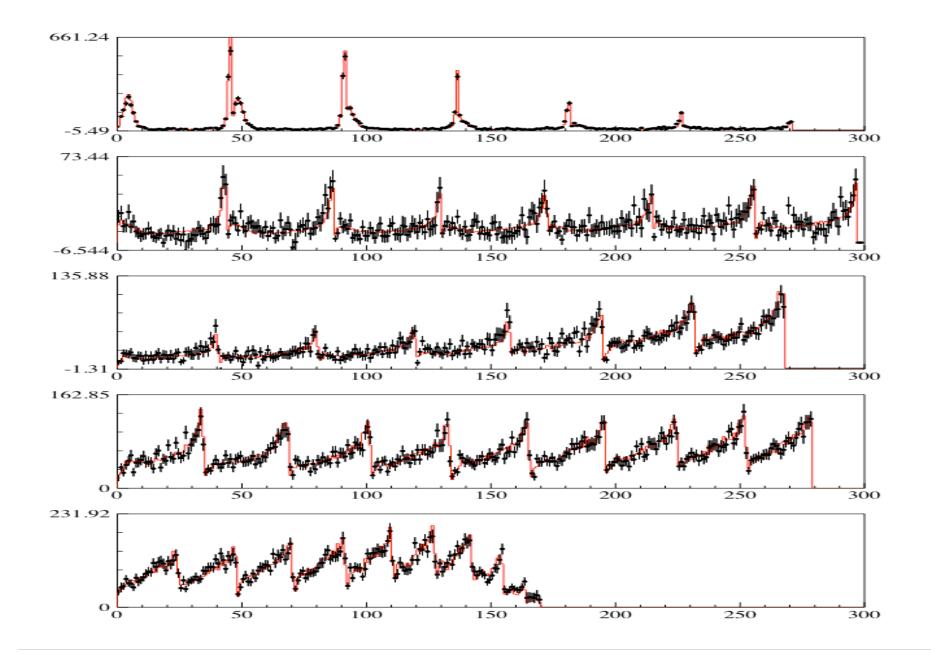
KL fit results: $f_0 + \sigma$ (the six "variants") : VDM term

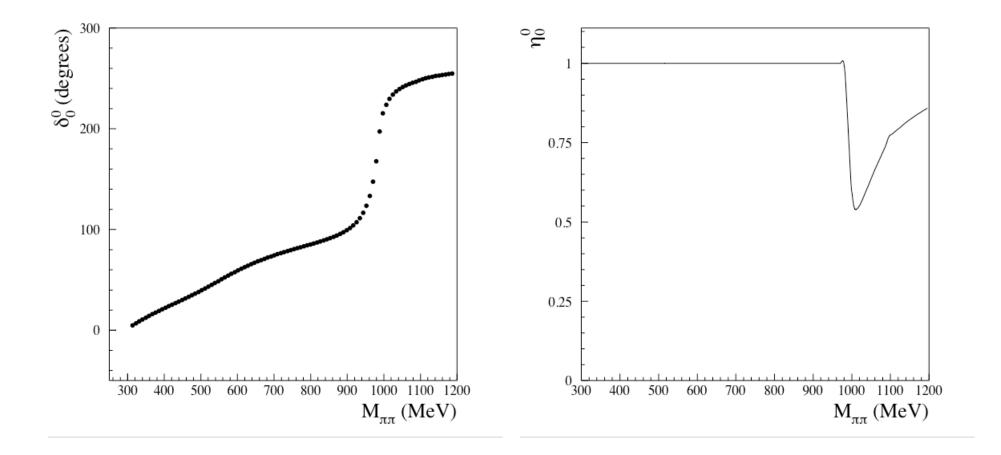

Fit	$\alpha_{\rho\pi}$	$C_{\omega^{\rm eff}}~({\rm GeV^{-2}})$	$\phi_{\omega\pi}$	$C_{\rho\pi}$ (GeV ⁻²)	$\phi_{\rho\pi}$	δ_{b_p} (°)	M_{ω} (MeV)
1	0.58 ± 0.11	0.850 ± 0.010	0.46 ± 0.13	0.260 ± 0.185	3.11 ± 3.12	33.0 ± 9.7	782.52 ± 0.29
2	0.68 ± 0.03	0.832 ± 0.003	0.30 ± 0.05	0.061 ± 0.211	3.14 ± 3.08	23.6 ± 4.1	782.20 ± 0.11
3	0.66 ± 0.17	0.836 ± 0.004	0.33 ± 0.08	0.084 ± 0.056	3.14 ± 3.14	25.2 ± 6.2	782.26 ± 0.28
4	0.72 ± 0.04	0.826 ± 0.003	0.21 ± 0.06	0.062 ± 0.003	3.14 ± 0.02	15.7 ± 3.4	782.12 ± 0.11
-5	0.71 ± 0.05	0.814 ± 0.003	0.22 ± 0.07	0.231 ± 0.054	0.00 ± 2.01	26.1 ± 3.7	781.91 ± 0.13
6	0.81 ± 0.03	0.813 ± 0.003	0.21 ± 0.05	0.060 ± 0.006	3.12 ± 0.43	10.4 ± 1.8	781.91 ± 0.09
Fit	$\alpha_{\rho\pi}$	$C_{\omega\pi}$ (GeV ⁻²)	$\phi_{\omega\pi}$	$C_{\rho\pi}$ (GeV ⁻²)	$\phi_{\rho\pi}$	$\delta_{b_{\rho}}$ (°)	M_{ω} (MeV)
Fit 1	$\alpha_{\rho\pi} = 0.62 \pm 0.05$	$C_{\omega \pi}$ (GeV ⁻²) 0.852 ± 0.015	$\phi_{\omega\pi}$ 0.19 ± 0.15	$C_{ ho\pi}$ (GeV ⁻²) 0.065 ± 0.217	$\phi_{\rho\pi}$ 2.96 ± 0.61	$\delta_{b_{\beta}}$ (°) 32.8 ± 7.9	M_{ω} (MeV) 782.32 ± 0.21
1	0.62 ± 0.05	0.852 ± 0.015	0.19 ± 0.15	0.065 ± 0.217	2.96 ± 0.61	32.8 ± 7.9	782.32 ± 0.21
1 2	$\begin{array}{c} 0.62 \pm 0.05 \\ 0.73 \pm 0.22 \end{array}$	$\begin{array}{c} 0.852 \pm 0.015 \\ 0.831 \pm 0.003 \end{array}$	$\begin{array}{c} 0.19 \pm 0.15 \\ 0.18 \pm 0.06 \end{array}$	$\begin{array}{c} 0.065 \pm 0.217 \\ 0.272 \pm 0.123 \end{array}$	$\begin{array}{c} 2.96 \pm 0.61 \\ 3.14 \pm 1.69 \end{array}$	32.8 ± 7.9 4.1 ± 3.6	$\begin{array}{c} 782.32 \pm 0.21 \\ 782.12 \pm 0.13 \end{array}$
1 2 3	$\begin{array}{c} 0.62 \pm 0.05 \\ 0.73 \pm 0.22 \\ 0.69 \pm 0.14 \end{array}$	$\begin{array}{c} 0.852 \pm 0.015 \\ 0.831 \pm 0.003 \\ 0.834 \pm 0.004 \end{array}$	$\begin{array}{c} 0.19 \pm 0.15 \\ 0.18 \pm 0.06 \\ 0.16 \pm 0.06 \end{array}$	$\begin{array}{c} 0.065 \pm 0.217 \\ 0.272 \pm 0.123 \\ 0.069 \pm 0.204 \end{array}$	$\begin{array}{c} 2.96 \pm 0.61 \\ 3.14 \pm 1.69 \\ 3.14 \pm 2.55 \end{array}$	32.8 ± 7.9 4.1 ± 3.6 15.8 ± 1.9	$\begin{array}{c} 782.32 \pm 0.21 \\ 782.12 \pm 0.13 \\ 782.12 \pm 0.24 \end{array}$

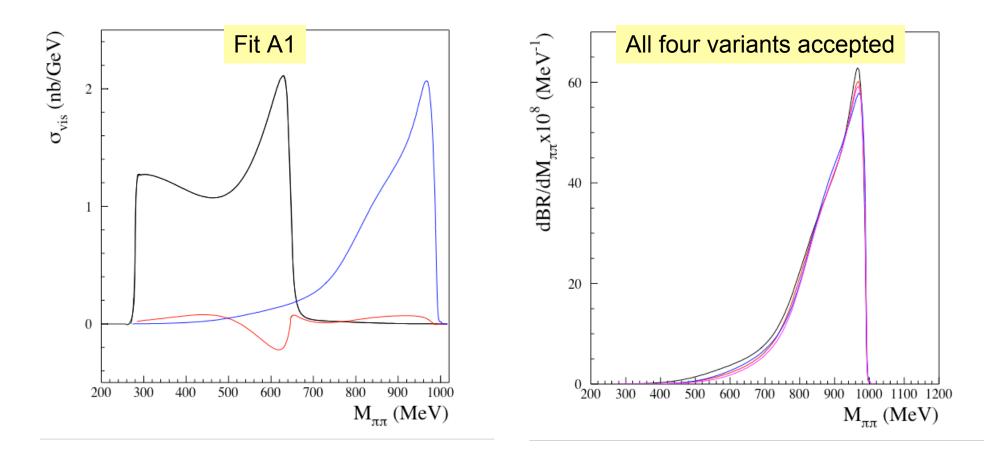
Stable results on the VDM side.

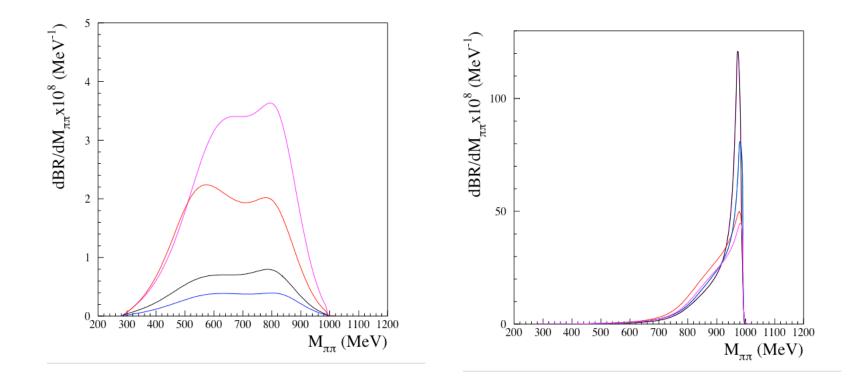

Too much jumping on δ Brho when leaving Mass of s(600) free.

 $\alpha_{\rho\pi} \approx 0.6$, C $\rho\pi$ unstable but determined with large error. Precise M ω !.


KL fit A1: $f_0 + \sigma$ (MASSES) @ $\sqrt{s} = 1019.6$ MeV


KL fit A1: $f_0 + \sigma$ (dalitz-slices) @ $\sqrt{s} = 1019.6$ MeV


KL fit A1: $f_0 + \sigma$ (dalitz-slices) @ $\sqrt{s} = 1019.6$ MeV


KL fit A1: $f_0 + \sigma$ (phases + inelasticity)

KL fit A1: $f_0 + \sigma$ (VDM/Sy compositions)

BR($\phi \rightarrow S\gamma \rightarrow \pi^0\pi^0\gamma$) of around 1.1 X10⁻⁴ for fit A1 Max variation with other 3 models of 8 %

Summary of KL fit results at $\sqrt{s} = 1019.6$ MeV:

	$f_0 + \sigma (M_\sigma fixed)$	$f_0 + \sigma (M_\sigma free)$	$\boldsymbol{f_0} \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
M _{f0} (MeV)	976.8 ± 0.3 + 10.5	974.8 ± 0.6 + 12.5	980 - 987
$g_{fK^+K^-}$ (GeV)	3.76 ± 0.04 +1.16	3.49 ± 0.08 + 0.57	3.9 – 6.5
$g_{f\pi^+\pi^-}(GeV)$	-1.43 ± 0.01 + 0.60	-1.29 ± 0.04 +.77	2.8 - 3.8
M _σ (MeV)	461-543	551 ± 15 - 76	
α _{ρπ} (φ)	0.58 ± 0.11 + 0.14	0.62 ± 0.05 + 0.09	
С _{ол} (GeV ⁻²)	0.850 ± 0.010 - 0.24	0.852 ± 0.015 - 0.24	
$\phi_{\omega\pi}$	0.46 ± 0.13 - 0.25	0.19 ± 0.15 +0.21	
$C_{\rho\pi}(GeV^{-2})$	0.260 ± 0.185 - 0.200	0.065 ± 0.217 +0.207	
$\phi_{ ho\pi}$	3.11 ± 3.12 + 0.03	2.96 ±0.61 +0.18	
M_{ω} (MeV)	782.5 ± 0.3 - 0.4	782.3 ± 0.2 -0.2	
$\delta_{\text{b}_{\rho}}(\text{degree})$	33.0 ± 9.7 - 15	32.8 ± 7.9 -28.7	
χ^2 /ndf	2753/ 2676	2734 / 2675	
Ρ(χ²)	14.5 %	20.8 %	

Central values are from the best fit A1.

The first error is the statistical error from the fit, the second one reflects the changes related to A different model which still provides an acceptable fit (theory model error).

Conclusions and perspectives

We consider the KL fit concluded!

We require these results to be blessed as "preliminary" for 2 reasons:

- (1) we are writing the KLOE memo to explain the fit detail
 - & report the results to our referees and KLOE all.
- (2) we are adding the fit systematics by repeating the best fit(A1+NS) with the following tests:
 - Change of normalization scale (L + Γ_{ee})
 - Change of beam energy scale (-150 keV)
 - Change of cluster efficiency curve (MC vs Tom)
 - Change of smearing matrix
 - Change of background content by fitting data with $\chi^2 < 3$

We will conclude the memo on the fit by comparing with $\pi^+\pi^-\gamma$ For publication purposes we ask C.Bini to test our best fit over the $\pi^+\pi^-\gamma$ sample and G.Venanzoni to add this on EVA to test the effect on the asymmetry.

Fit function: the Achasov parametrization

$$\frac{d\sigma(e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma)}{dmdm_{\pi\gamma}} = \frac{\alpha m_{\pi\gamma}m}{3(4\pi)^{2}s^{3}} \{ \cdot ||\mathbf{A}_{scalar}||^{2} + f_{0\gamma} \\ \frac{1}{16}F_{1}(m^{2}, m_{\pi\gamma}^{2})| \left(\frac{e^{i\phi_{\omega\phi}(m_{\psi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi}\right) \frac{e^{i\delta_{b}}}{D_{\rho}(m_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(m_{\pi\gamma}^{2})} \right|^{2} + \frac{1}{16}F_{1}(m^{2}, \tilde{m}_{\pi\gamma}^{2})| \left(\frac{e^{i\phi_{\omega\phi}(m_{\psi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi}\right) \frac{e^{i\delta_{b}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})} \right|^{2} + \frac{1}{8}F_{2}(m^{2}, m_{\pi\gamma}^{2})Re\left[\left(\left(\frac{e^{i\phi_{\omega\phi}(m_{\psi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi}\right) \frac{e^{i\delta_{b}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})} \right) \times \left(\left(\frac{e^{i\phi_{\omega\phi}(m_{\psi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi}\right) \frac{e^{i\delta_{b}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})} \right) \times \right] \right\}$$

$$F_{3}(m^{2}, m_{\pi\gamma}^{2}) \left(\left(\frac{e^{i\phi_{\omega\phi}(m_{\psi}^{2})}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi}\right) \frac{e^{i\delta_{b}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^{2})} + \frac{C_{\omega\pi^{0}}}{D_{\omega}(\tilde{m}_{\pi\gamma}^{2})} \right) \right\}$$

$$[N.N.Achasov, A.V.Kiselev, private communication]$$

$$V DM free parameters: C_{VP}, \delta_{Dp}, \alpha_{\rhop}(\phi), M_{0}$$

✓ M_{σ} free or fixed to BES value (541 MeV)