Federico Nguyen, Graziano Venanzoni

- > motivation: the $\pi\pi\gamma$ / $\mu\mu\gamma$ ratio
- single particle method
- the rest of the event
- > first glance at the $\mu\mu\gamma$ trigger efficiency

The data sample: reproc'd 2002 events

- new FILFO (Bhabha rej. dropped)
- \cdot enlarged m_{trk} 90 MeV \rightarrow 80 MeV
- $\pi^+\pi^-\pi^0$ prescaled (1/1000) m_{miss} > 120 MeV

datarec version \geq 22

working point: events with 130 MeV < m_{trk} < 190 MeV are $\pi\pi\gamma$ m_{trk} < 113 MeV are $\mu\mu\gamma$

- 1. small angle photon $\theta_{\pi\pi} < 15^{\circ}$
- 2. each track with $50^{\circ} < \theta_{\text{track}} < 130^{\circ}$
- 3. at least one track with $\zeta > 0$

Definition of $\mu\mu\gamma$ events (I)

Definition of $\mu\mu\gamma$ events (II)

ECAL trigger efficiency

• each category may have associated 0, 1, 2 trigger sectors • small angle photon, $\theta_{\pi\pi} < 15^{\circ}$ (retrieved with the CTRG bank)

d = distance btw cluster centroid and the extrap'd point of the track

Single track efficiency

The rest of the event

it consists of:

- $\boldsymbol{\cdot}$ fragments of the π cluster
- large angle photons
- secondary particles created
 by photons hitting the
 quadrupoles
- pile up events

the normalization is provided by the events triggered by the π 's

features and how to compare with 2001, still to be understood

Single muon efficiency

probability of firing 1 (•) or 2 (\circ) trigger sectors for the μ^+ (2002)

the probability of firing 0 sectors happens to be ~ 0 this explains the funny up-down symmetric behaviour

The rest efficiency for $\mu\mu\gamma$ events

as expected:

the probability of cluster
fragments from μ's is less
than in the π's case
lower self-triggering
efficiency

Preliminary conclusions

trigger studies from data have been addressed

single particle efficiencies have been
 evaluated both in the π and in the μ case
 the rest of the event must be compared with
 the background rate in both cases