Progress report on $\pi^0 \pi^0 \gamma$ analysis

S. Giovannella, S.Miscetti (LNF-INFN)

- > Final fits to the \sqrt{s} -dependence of visible cross sections
- > Status of KLOE memos ...
- > Plans for the fitting of the Dalitz-plot

 ϕ decays meeting – 22 Nov 2005

Status and plan

- As shown in the July phidec meeting, we have reached a stable conclusive result for the data analysis while we are completing the fit on the dalitz-plot.
- Today we show the results of the fits to the $\pi\pi\gamma$ visible cross section obtained by repeating the analysis "as in 2001" i.e. **neglecting any interference between VDM and scalar terms**.
- From these fits we will extract the parameters describing the $e^+e^- \rightarrow \omega \pi^0$ and the BR($\phi \rightarrow \pi \pi \gamma$).
- To understand how well we do all of this (+ for checking the normalization of our main background) we have also analized a large sample of $\varphi \rightarrow \eta \gamma$ decays in 7 photons (prescaling 1/50 while running our 5-photon selection).

- As in 2001, we then count as :
 - $\omega\pi$ events the ones in within 3 sigma from M ω
 - $S\gamma$ all the others

$\omega\pi$ vs Sy events (Angular distributions)

ωπ events vs \sqrt{s} (angular distributions)

$\omega\pi$: energy dependence of the xsec

$$\sigma^{\omega\pi}(\sqrt{s}) = \sigma_0^{\omega\pi}(\sqrt{s}) \left| 1 - Z \frac{M_{\phi} \Gamma_{\phi}}{D_{\phi}} \right|^2, \qquad (11)$$

where $\sigma_0^{\omega\pi}(\sqrt{s})$ represents the nude cross section for the not-resonant process, Z is the complex interference parameter (i.e. the ratio between the ϕ decay amplitude and the not-resonant process), while M_{ϕ} , Γ_{ϕ} and $D_{\phi} = M_{\phi}^2 - s - i\sqrt{s}\Gamma_{\phi}$ are respectively the mass, the width and the inverse propagator of the ϕ meson.

$\omega\pi$: Fit to the visible xsec

√s (MeV)

$\omega\pi$: FIT RESULTS to the visible xsec

FIT	σ ₀ (nb)	왔 (Z)	3 (Z)	$\sigma'({ m nb}/{ m MeV})$	χ^2 / Ndof
(A) σ' fixed	0.731 ± 0.035	0.060 ± 0.020	-0.157 ± 0.030	0.0048	5.0/11
(A) σ' fixed	0.748 ± 0.010	0.049 ± 0.016	-0.152 ± 0.007	0.0073	4.8/11
(A) All free	0.756 ± 0.245	0.041 ± 0.040	-0.148 ± 0.124	0.0098 ± 0.0114	4.5/10
FIT	σ ₀ (nb)	釈 (Z)	9 (Z)	A_1	$\chi^2/$ Ndof
(B) A_1 fixed	0.745 ± 0.014	0.051 ± 0.012	-0.153 ± 0.007	-0.114	5.0/11
(B) A_1 fixed	$0.7\pm6\pm0.028$	0.050 ± 0.020	-0.153 ± 0.022	-0.150	4.9/11
(B) All free	0.743 ± 0.016	0.054 ± 0.019	-0.154 ± 0.012	-0.005 ± 0.001	5.1/10
FIT	σ ₀ (nb)	衆 (Z)	3 (Z)	A_1	$\chi^2/$ Ndof
(C) A_1 fixed	0.745 ± 0.011	0.052 ± 0.020	-0.154 ± 0.012	-0.114	5.0/11
(C) A_1 fixed	$0.7\pm6\pm0.007$	0.051 ± 0.001	-0.154 ± 0.001	-0.150	5.0/11
(C) All free	0.743 ± 0.009	0.055 ± 0.016	-0.154 ± 0.006	-0.012 ± 0.002	5.1/10

$$\sigma_0^{\omega\pi} = (0.75 \pm 0.03_{\text{stat}} \stackrel{+0.01}{_{-0.02}}) \text{ nb}$$
(14)

$$\Re(Z) = 0.05 \pm 0.02_{\text{stat}} \pm 0.01$$
 (15)

 $\Im(Z) = -0.15 \pm 0.02_{\text{stat}} - 0.01 \tag{16}$

in good agreement and with similar accurancy with respect to SND results [26]: $\sigma_0^{\omega\pi} = (0.74 \pm 0.02_{\text{stat}} \pm 0.04_{\text{syst}})$ nb, $\Re(Z) = 0.025 \pm 0.035$, $\Im(Z) = -0.19 \pm 0.05$.

$\phi \rightarrow \eta \gamma$: energy dependence of the cross sections

$$12\pi \Gamma_{\phi}^{e^+e^-} \Gamma_{\phi}^{\eta\gamma} \left| \frac{e^{i\pi}}{D_{\phi}} + \frac{R_{\rho}}{D_{\rho}} + \frac{R_{\omega}}{D_{\omega}} \right|^2 \left(\frac{M_{\phi}}{\sqrt{s}} \right)^3 \left(\frac{Q_{\eta}(\sqrt{s})}{Q_{\eta}(M_{\phi})} \right)^3$$
(3)

 $\phi \rightarrow f_0 \gamma$: energy dependence of the xsec

$$\sigma_0^{S\gamma}(s) = 12\pi\Gamma_{\phi}^{e^+e^-}\Gamma_{\phi}^{S\gamma} \left|\frac{1}{D_{\phi}(s)}\right|^2 \left(\frac{M_{\phi}}{\sqrt{s}}\right)^3 R_{\Gamma}(s)$$

f₀ γ : **Determination of BR** ($\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$)

FIT	α	$M_{ m \phi}~({ m MeV})$	$\Gamma_{\phi}~({ m MeV})$	$\chi^2/$ Ndof
(A) All free	1.319 ± 0.012	1019.34 ± 0.01	4.60 ± 0.09	13.9/11
(B) Γ_{ϕ} fixed	1.285 ± 0.001	1019.21 ± 0.35	4.358	17.2/12
(C) M_{ϕ}, Γ_{ϕ} fixed	$1.223~\pm~0.001$	1019.46	+.26	21.8/12

From the value of α we determine the value of $\Gamma(\phi \to f_0 \gamma)$ at M_{ϕ} which is proportional to $\left(g_{f_0}^{K^+K^-}g_{f_0}^{\pi^+\pi^-}\right)^2$. We get $\Gamma(\phi \to \pi^0\pi^0\gamma) = (0.498 \pm 0.005 \pm 0.022)$ keV. The systematic error is dominated by the variation of the three fits. When dividing by $\Gamma_{\phi}(M_{\phi})$ we determine the $BR(\phi \to f_0\gamma)$ to be:

BR($\phi \rightarrow \pi^0 \pi^0 \gamma$) = (1.057 ± 0.046_{fit} ±0.017_{norm}) •10⁻⁴

where the normalization error reflects our knowledge of Γ_{ϕ}^{ll} . The result is in pretty good agreement with our old measurement.

First conclusions ..

- As shown in this presentation, when neglecting the interference between $\omega\pi$ and Sy we are able to distinguish the most relevant features of the $\pi\pi\gamma$ events:
 - There is a clear resonant not resonant component
 - The not resonant component is dominated by $e^+e^- \rightarrow \omega \pi \rightarrow \pi \pi \gamma$ events with a well defined spin 1 angular dependence.
 - The resonant component is a scalar
 - If we fit the not-resonant component we find the parameters describing the interference with the ϕ meson to be in reasonable agreement with SND.
- If we fit the resonant component we find that the two points far away the ϕ peak are not perfectly described by our model. However we extract the BR ($\phi \rightarrow \pi\pi\gamma$)
- All of this work has been summarized in a KLOE Memo 319Submitted today!

Improved K-loop parametrization

N.N.Achasov, private communication

➢ Insertion of a KK phase:

$$\tan \delta_B^{K\bar{K}} = \sqrt{m^2 - 4m_{K^+}^2} f_K(m^2) = \frac{\sqrt{m^2 - 4m_{K^+}^2}}{\Lambda_K} \operatorname{atan} \frac{m_2^2 - m^2}{m_0^2}$$

Beyond to its contribution in the interference term, IT CHANGES THE SCALAR TERM AMPLITUDE IN THE $M_{\pi\pi} < 2M_{K}^{+}$ REGION

$$M_{sig} = \sqrt{\frac{1 - f_K(m^2)\sqrt{4m_{K^+}^2 - m^2}}{1 + f_K(m^2)\sqrt{4m_{K^+}^2 - m^2}}}g(m)e^{i\delta_B^{\pi\pi}} \left((\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}\right)\sum_{R,R'}g_{RK^+K^-}G_{RR'}^{-1}g_{R'\pi^0\pi^0}g_{R'\pi^0\pi^0}(\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}g_{R'R'}g_{R'\pi^0\pi^0}(\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}g_{R'R'}g_{R'\pi^0}(\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}g_{R'R'}g_{R'\pi^0\pi^0}(\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}g_{R'R'}g_{R'R'}g_{R'\pi^0\pi^0}(\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}g_{R'R'}g_{R'R'}g_{R'R'}g_{R'\pi^0\pi^0}(\phi\epsilon) - \frac{(\phi q)(\epsilon p)}{(pq)}g_{R'R'}g_{R$$

 \triangleright New parametrization of the $\pi\pi$ phase:

$$\tan(\delta_B^{\pi\pi}) = -\frac{p_\pi}{2m_\pi} \left(b_0 - b_1 \frac{p_\pi^2}{(2m_\pi)^2} + b_2 \frac{p_\pi^4}{(2m_\pi)^4} \right) \frac{1}{1 + p_\pi^2 / \Lambda^2}$$
$$p_\pi = \sqrt{m^2 - 4m_{\pi^+}^2}$$

Results with the new parametrization

Achasov-Kiselev: combined fit to KLOE 2000 + $\pi\pi$ scattering data

Results with the new parametrization

Achasov-Kiselev: combined fit to KLOE 2000 + $\pi\pi$ scattering data

Fit results: new K-loop parametrization

	f ₀ only	$f_0 + \sigma (M_\sigma \text{ fixed})$	$f_0 + \sigma$	$f_0 \rightarrow \pi^+ \pi^-$
M _{f0} (MeV)	986.2 ± 0.2	981.9 ± 0.3	981.3 ± 0.7	981 - 985
$g_{fK}^{+}{}_{K}^{-}$ (GeV)	5.8 ± 0.1	3.96 ± 0.05	3.78 ± 0.08	3.9 - 6.5
$g_{f\pi^+\pi^-}(GeV)$	-2.88 ± 0.02	-1.78 ± 0.02	-1.74 ± 0.04	2.8 - 3.8
M _o (MeV)		—	578 ± 5	
g _{σππ} (GeV)		-1.91 ± 0.03	-1.83 ± 0.05	
g _{oKK} (GeV)		-0.66 ± 0.07	-0.68 ± 0.05	
$ C_{f0\sigma} $ (GeV)	—	3.6 ± 4.5	9.3 ± 5.9	
$\alpha_{ ho\pi}(\phi)$	0.78 ± 0.08	0.59 ± 0.05	0.64 ± 0.05	
$C_{\omega\pi}$ (GeV ⁻²)	0.813 ± 0.004	0.844 ± 0.008	0.841 ± 0.007	
$\phi_{\omega\pi}$	1.4 ± 0.1	0.7 ± 0.1	0.6 ± 0.1	
$C_{\rho\pi}(GeV^{-2})$	0.3 ± 0.2	0.1 ± 0.1	0.1 ± 0.2	
$\phi_{ ho\pi}$	3.1 ± 0.7	1.8 ± 2.5	1.5 ± 0.9	
M_{ω} (MeV)	782.1 ± 0.3	782.3 ± 0.3	782.1 ± 0.2	
$\delta_{b_{\rho}}$ (degree)	63 ± 9	56 ± 5	48 ± 8	
χ^2/ndf	2944.4 / 2677	2718.7 / 2673	2702.0 / 2672	
P (χ ²)	0.18 × 10 ⁻³	26.4%	33.8%	

Fit results: new K-loop parametrization

K-loop fit results: $f_0 + \sigma (M_{\sigma} \text{ fixed})$

The fit parameters obtained in the $f_0 + \sigma$ case do not give a good parametrization of δ_0^{0}

Achasov: **some theoretical restrictions** (analyticity of the amplitudes...) **have to be imposed in the fit**. We have to include them!

K-loop fit results: $f_0 + \sigma$

- Discussing with Achasov we realized that the parameters of σ and the kk, pp phases are very much related.
- To let them vary freely we should either fit also δ_0^0 or impose a lot of theory restrictions which are not so easy to implement in our fitting function.
- We therefore followed a much more simple approach:
 - (Fit A) we left free only the f_0 parameters + VDM
 - (Fit B) as (Fit A) leaving the sigma mass to vary

f0 + Vdm + Sigma Free

f0 + Vdm + Sigma FIXED

f0 + Vdm + Sigma FIXED

f0 + Vdm + Sigma Free

K-loop fit results: $f_0 + \sigma$ (compositions)

f0 + Vdm + Sigma FIXED

f0 + Vdm + Sigma Free

Fit results:

	$f_0 + \sigma (M_\sigma fixed)$	$f_0 + \sigma (M_\sigma \text{ free})$	$f_0^{} \rightarrow \pi^+\pi^-$
M _{f0} (MeV)	987.1 ± 0.1	987.2 ± 0.1	981 - 985
$g_{fK}^{+}{}_{K}^{-}$ (GeV)	3.53 ± 0.04	3.80 ± 0.07	3.9 - 6.5
$g_{f\pi^+\pi^-}(GeV)$	-1.95 ± 0.01	-2.03 ± 0.01	2.8 - 3.8
M _o (MeV)	541	484.6 ± 21.9	
$\alpha_{ ho\pi}(\phi)$	0.76±0.18	0.69 ± 0.05	
$C_{\omega\pi}$ (GeV ⁻²)	0.826 ±0.003	0.827 ± 0.001	
$\phi_{\omega\pi}$	0.21 ±0.03	0.47 ± 0.05	
$C_{\rho\pi}(GeV^{-2})$	0.198 ±0.045	0.62 ± 0.23	
$\phi_{ ho\pi}$	3.14 ± 1.98	3.14 ±2.45	
M ₆₀ (MeV)	782.1 ± 0.3	782.2 ± 0.2	
$\delta_{b\rho}$ (degree)	7.5 ± 3.2	31.0 ± 4.0	
χ^2/ndf	2862/2676	2845 / 2675	
$P(\chi^2)$	0.6 %	1.1 %	

Conclusions

- ***** S-dependence of $\pi^0 \pi^0 \gamma$ x-sec done!
- ***** KLOE memo submitted.
- Fit results to the Dalitz at 1019.6 with KL improved parametrization is reasonable !
- + It has a good $\pi\pi$ phase behaviour.
- ***** Other points at different \sqrt{s} to be fit

We will proceed with the writing of the dalitz-fit Documentation and then go for the final blessing