

(18 luglio: San Federico di Utrecht, Vescovo)

- > analytical functions: Kühn-Santamaria vs. Gounaris-Sakurai $\sigma_{e^+e^- o \pi^+\pi^-}($
- results on fitting the 2 functions

2 slides on recent comments on the KLOE measurement by SND Coll. and M. Davier

outlook and perspectives

$$\sigma_{e^+e^- \to \pi^+\pi^-}(s) = \frac{\pi}{3} \frac{\alpha_{em}^2 \beta_\pi^3}{s} |F_\pi(s)|^2$$

$$\beta_{\pi} = \sqrt{1 - \frac{4 m_{\pi}^2}{s}}$$

Gounaris-Sakurai

"Gounaris-Sakurai" means the same function used by CMD-2 $F_{\pi}(s) = -$ (ALEPH used a slightly modified version):

> for $\rho(770)$ and $\rho'(1450)$ they use the prescription given by G.J. Gounaris, J.J. Sakurai PRL21 (1968) 244

 d_0 = constant chosen for BW^{GS}(0)=1 f(s) = function required by analytical behaviour at $s=4m_{\pi}^{2}$ and at s=0 $\delta = |\delta| e^{i \arg \delta}$, complex interf. term

$$\frac{BW_{\rho}^{GS}(s)\left(1+\delta\frac{s}{M_{\omega}^{2}}BW_{\omega}(s)\right)+\beta BW_{\rho}^{GS}(s)}{1+\beta}$$
$$BW^{GS}(s) = \frac{M_{v}^{2}\left(1+d_{0}\frac{\Gamma_{v}}{M_{v}}\right)}{M_{v}^{2}-s+f(s)-iM_{v}\Gamma_{v}(s)}$$

1

$$\Gamma_{\rho}(s) = \Gamma_{\rho} \left(\frac{p_{\pi}(s)}{p_{\pi}(M_{\rho}^{2})} \right)^{3} \sqrt{\frac{M_{\rho}^{2}}{s}}$$

$$BW_{\omega}(s) = \frac{M_{\omega}^2}{M_{\omega}^2 - s - iM_{\omega}\Gamma_{\omega}}$$

Kühn-Santamaria

"Kühn-Santamaria" means the following function, used by C. Bini

$$F_{\pi}(s) = \frac{BW_{\rho}^{KS}(s)\frac{1+\alpha BW_{\omega}(s)}{1+\alpha} + \beta BW_{\rho}^{KS}(s)}{1+\beta}$$

for $\rho(770)$ and $\rho'(1450)$ they use the prescription given by J.H. Kühn, A. Santamaria ZPC48 (1990) 445

BW ^{KS} (s) =
$$\frac{M_V^2}{M_V^2 - s - i\sqrt{s}\Gamma_V(s)}$$

$$\Gamma_{\rho}(s) = \Gamma_{\rho} \left(\frac{p_{\pi}(s)}{p_{\pi}(M_{\rho}^{2})} \right)^{3} \frac{M_{\rho}^{2}}{s}$$

no phase (
$$\alpha$$
 is real) btw ρ and ω
contrary to the G.-S., it has not the
correct analytical behaviour
for low s values H. Leutwyler

$$BW_{\omega}(s) = \frac{M_{\omega}^2}{M_{\omega}^2 - s - iM_{\omega}\Gamma_{\omega}}$$

Definition of the χ^2

$$N_{i}^{exp} = \left(1 - f_{i}^{bkgr}\right) N_{i}^{obs} \qquad N_{i}^{th}(\vec{\theta}) = L \varepsilon_{i}^{mtrk} \varepsilon_{i}^{filfo} \sum_{j} S_{ij} \varepsilon_{j}^{fsr} \varepsilon_{j}^{geom} \varepsilon_{j}^{trig} \varepsilon_{j}^{vtx} \varepsilon_{j}^{trck} |F_{\pi,i}(\vec{\theta})|^{2}$$

 $\underline{\theta}$ is the vector of free parameters

- 1. a χ^2 distributed function to minimize, $Prob(\chi^2 > \chi_{min}^2, dof)$
- 2. statistical uncorrelated errors summed in quadrature

$$\chi^{2} = \frac{\left[N_{i}^{exp} - N_{i}^{th}\left(\vec{\theta}\right)\right]^{2}}{\sigma_{obs, i}^{2} + \sigma_{bkgr, i}^{2} + \sigma_{eff, i}^{2}}$$

 $\mathbf{N}_i{}^{th}$ is in numerical form, because of efficiencies and smearing matrix

K-S: $\rho'(1450)$ and ω are fixed

	this fit	C. Bini KL		
M _ρ (MeV)	771.67 ± 0.15	773.1		
Γ _ρ (MeV)	140.6 ± 0.2	144.0		
M _{ρ'} (MeV)	1465	1465		
$\Gamma_{\rho'}$ (MeV)	310	310		
M _ω (MeV)	782.59	782.59		
Γ_{ω} (MeV)	8.49	8.49		
α (10-3)	1.38 ± 0.05	1.65		
β (10 -3)	-134.0 ± 0.9	-123		

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

 $\chi^2/dof = 617.2 / 56$

FROM MIGRAD STATUS=CONVERGED EDM= 0.24E-06 STRATEGY= 1 ERROR MATRIX ACCURATE

K-S: only $\rho'(1450)$ is fixed

_	this fit	C. Bini KL			
M _ρ (MeV)	771.27 ± 0.16	773.1			
$\Gamma_{ ho}$ (MeV)	140.3 ± 0.2	144.0			
Μ _{ρ'} (MeV)	1465	1465			
$\Gamma_{ ho^{,}}$ (MeV)	310	310			
$M_{_{\mathrm{o}}}$ (MeV)	781.4 ± 0.3	782.59			
Γ_{ω} (MeV)	4.0 ± 0.5	8.49			
α (10-3)	1.03 ± 0.06	1.65			
β (10 -3)	-134.2 ± 0.9	-123			

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

 $\chi^2/dof = 502.6 / 54$

FROM MIGRAD STATUS=CONVERGED EDM= 0.22E-07 STRATEGY= 1 ERROR MATRIX ACCURATE

 ${\rm M_{\pi\pi}}^2$ (GeV²)

Partial conclusions with K-S

- > our values are significantly different from those of Cesare, f0 effects?
- \succ if all are left free, $\rho'(1450)$ and the ω width tend to completely unreasonable values
- > a reasonable value for β is $\beta = 134 \times 10^{-3}$, despite of the χ^2
- > systematic errors should be included in the χ^2 (see a couple of slides later)

G-S: $\rho'(1450)$ and ω are fixed

M _ρ (MeV)	773.95 ± 0.16				
$Γ_ρ$ (MeV)	144.8 ± 0.3				
Μ_ρ . (MeV)	1465				
$\Gamma_{\rho^{,}}$ (MeV)	310				
$M_{_{\mathrm{\omega}}}$ (MeV)	782.59				
$Γ_ω$ (MeV)	8.49				
δ (10 -3)	$\textbf{1.61} \pm \textbf{0.05}$				
<i>arg</i> δ (°)	13.2 ± 1.7				
β (10 -2)	-7.54 ± 0.09				

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

 $\chi^2/dof = 206.8 / 55$

FROM MIGRAD STATUS=CONVERGED EDM= 0.19E-05 STRATEGY= 1 ERROR MATRIX ACCURATE

G-S: only $\rho'(1450)$ is fixed

G-S: all free

			[
	M _ρ (MeV)	773.9 ± 0.2	50000	_			Nth
	Γ _ρ (MeV)	149.5 ± 1.0	40000	-		w _E	N ^{exp}
	M _ρ (MeV)	2200	20000	۔ بے ا	F		_
	Γ _ρ , (MeV)	1.3×10 ⁶	10000	سم سمب المراجع			
	$M_{_{\!$	$\textbf{782.0} \pm \textbf{0.6}$	0		<u>ي ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،</u>		ليريبينيا
	$Γ_ω$ (MeV)	$\textbf{5.6} \pm \textbf{0.9}$		0.4 0.	5 0.6	0.7	0.8 0.9
	δ (10 -3)	$\textbf{1.40} \pm \textbf{0.09}$	12	-		•	
	<i>arg</i> δ (°)	4 ± 5	10	- cont	r. to χ^2		
	β (10 -2)	-10.4 ± 0.6	8	-		•	
COVZ SUCC	ARIANCE MAT CESSFULLY	TRIX CALCULA	TED 4		••••	•	
χ²/d	of= 100.	3 / 51					
FROM	MIGRAD	STATUS=CON	VERGE	0.4 0.	5 0.6	0.7	0.8 0.9
EDM= ERRO	= 0.86E-05 OR MATRIX A	5 STRATEG ACCURATE	Y= 1				$M_{\pi\pi}^2$ (GeV ²)

Systematic uncertainties

- a) systematic uncertainties still to be implemented
- b) three categories have been classified:
- i. flat error related to a scale factor: luminosity
- ii. $M_{\pi\pi}^{2}$ dependent error related to a $M_{\pi\pi}^{2}$ dependent correction: trigger
- iii. errors correlated in steps of 5 bins, related to a $M_{\pi\pi}^{2}$ dependent correction: background estimates

covariance matrices, penalty functions, ...work is in progress

Luminosity	0.6 % flat in s_{π}
Acceptance	0.3 % flat in s_{π}
Trigger	$\exp(0.43-4.9 s_\pi [{\rm GeV^2}])~\%+0.08~\%$
Trackmass	0.2 % flat in s_{π}

rel. syst. error

$s~({\rm GeV^2})$	0	1	2	3	4	5	6	7	8	9
0.3						0.8	0.7	0.6	0.6	0.5
0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
0.6	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
0.7	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2
0.8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
0.9	0.2	0.2	0.2	0.2	0.2					

comparison is performed through the cross section σ^0_{fsr} , undressed from vacuum polarization, but including FSR corrections

SND: data points from hep-ex/0506076 (6th column in Tab. 1), <u>not yet published</u>

KLOE: data points from our paper, inclusive in FSR, but divided by vacuum polarization

CMD-2: data points from Phys Lett, B562 (2003) 173 (2nd column in Tab. 1)

Relative comparisons

⁶⁶ In light of the new SND data (SND-2 Coll., 2005), it seems appropriate to consider the possibility of a bias in the KLOE results, ⁶⁶

from hep-ph/0507078

... It sounds like I believe more in SND rather than in KLOE, on which argument?

Conclusions and outlook

- > several attempts of fitting our form factor have been performed, aside from $\rho'(1450)$, the values of the parameters are reasonable
- \blacktriangleright the functions are critical in the low mass region, above the ρ the
- G-S is well reproduced
- > we are computing the χ^2 including the systematic errors with the proper laws of correlation
- ➤ a preliminary comparison with both SND and CMD-2 does not exhibit the "conflict", recently claimed, we are working at a more quantitative comparison in view of Lisbon
- \succ a global fit, stat. and syst., including τ data, is planned

discussions with M. Antonelli, V. Cirigliano and G. Colangelo are acknowledged

Reminders...

