Study of the decay $\phi \rightarrow f_0(980)\gamma \rightarrow \pi^+\pi^-\gamma$

C.Bini, S.Ventura, *KLOE Memo 294* 03/2004 (upd. 06/2005) C.Bini, *KLOE Memo 304* 03/2005 (upd. 06/2005)

Outline

- Motivations of this analysis.
- The data sample: what we measure and how the data look like.
- Theory, KL, NS, SA,....
- The fits.
- Discussion of the results.
- Conclusion: what we learn from this analysis.

Motivations of this analysis

- Assess clearly the $\phi \rightarrow f_0(980)\gamma \rightarrow \pi^+\pi^-\gamma$ signal;
- determine the f₀(980) parameters
 (coupling to the φ to KK and ππ); assess
 the quark content of the f₀;
- any further meson is needed to describe the data ?
- Compare models.

The data sample: the event selection

- drc stream
- "vertex":
- "2 tracks":
- "pion identification"
- "large angle":
- "track mass":
- "photon matching":

R_v<8 cm; Z_v<15 cm; +,-; 45°<θ⁺,θ⁻<135°; L₁ vs. L₂ cut (AND); 45°<θ_{ππ}<135°; 129<M_T<149 MeV; E_{cl}>10 MeV; θ_{cl}>22° Ω_γ<0.03+3/E_{cl} N_v > 0

See Memo 294

The data sample: dN/dm

The data sample: large angle vs. small angle

The data sample: A_c Charge asymmetry A_c in bins of mAsymmetry "off-peak" data 0.4 0.3 $A_{c} = \frac{N(\theta^{+} > 90^{\circ}) - N(\theta^{+} < 90^{\circ})}{N(\theta^{+} > 90^{\circ}) + N(\theta^{+} < 90^{\circ})}$ 0.2 0.1 Asymmetry W=1017 MeV -0.1 on-peak" data 0.3 -0.2 -750 800 850 900 950 1000 $m(\pi\pi)$ (MeV) 0.2 Asymmetry 0.4 0.1 0.3 0.2 0 0.1 -0.1 W=1022 MeV -0.1 -0.2 300 400 500 600 700 800 900 1000 -0.2 <u></u> **m**(ππ) (**MeV**) 850 800 1000

900 950

 $m(\pi\pi)$ (MeV)

The data sample: \sqrt{s} dependence

 σ (900-1000 MeV) = N(events 900<*m*<1000 MeV) / L_{int} ϵ (*m*))

The data sample: detection efficiency

The data sample: estimated background

Dedicated MC generations of $\pi^+\pi^-\pi^0$, $\mu^+\mu^-\gamma$ and $\pi^+\pi^-(no \gamma)$: Check done "before photon request": good agreement above 450 MeV

Zoom (signal region)

Theory: KL,NS,SA,....

$$A(e^+e^- \to \phi \to S\gamma \to \pi^+\pi^-\gamma) = -\frac{esm_{\phi}^-}{4f_{\phi}D_{\phi}(s)} \{M\}$$

{M} has to rely on "some" model with "some" parameters

$$M_{KL} = 2g(m^{2})e^{i\delta(m)}\sum_{S,S'} \left(g_{SKK}G_{SS'}^{-1}g_{S'\pi+\pi-}\right)$$
$$M_{NS} = (s-m^{2})\left[\frac{g_{f\pi+\pi-}g_{\phi f\gamma}}{D'_{f}(m^{2})} + \frac{a_{0}}{m_{\phi}^{2}}e^{ib_{0}\sqrt{m^{2}/4-m_{\pi}^{2}}} + a_{1}\frac{m^{2}-m_{f}^{2}}{m_{\phi}^{4}}e^{ib_{1}\sqrt{m^{2}/4-m_{\pi}^{2}}}\right]$$
$$M_{SA} = (m^{2}-m_{o}^{2})(1-\frac{m^{2}}{s})\left[(a_{1}+b_{1}m^{2}+c_{1}m^{4})T_{11} + (a_{2}+b_{2}m^{2}+c_{3}m^{4})T_{12}\right]e^{i\lambda}$$

Theory: KL

(KL) by N.N.Achasov;

$$M_{KL} = 2g(m^2)e^{i\delta(m)}\sum_{S,S'} \left(g_{SKK}G_{SS'}^{-1}g_{S'\pi+\pi-}\right)$$

where:

g(m) = kaon-loop function $\delta(m) = \text{phase shift (based on } \pi\pi \text{ scattering data)}$ $D_f(m) = f_0 \text{ propagator (finite width corrections)}$ $G_{ss'}(m) = \begin{pmatrix} D_s(m) & -\Pi_{ss'}(m) \\ -\Pi_{ss}(m) & D_{s'}(m) \end{pmatrix}$

If only one meson (no σ included):

$$M_{KL} = 2g(m^2)e^{i\delta(m)}\frac{g_{fKK}g_{f\pi+\pi-}}{D_f(m)}$$

3 free parameters: \mathbf{m}_{f} , \mathbf{g}_{fKK} , $\mathbf{g}_{f\pi\pi}$

Theory: NS

(NS) after several discussions with G.Isidori, L.Maiani and (recently) S.Pacetti;

$$M_{NS} = (s - m^2) \left[\frac{g_{f\pi + \pi -} g_{\phi f\gamma}}{D'_f(m^2)} + \frac{a_0}{m_{\phi}^2} e^{ib_0 \sqrt{m^2/4 - m_{\pi}^2}} + a_1 \frac{m^2 - m_f^2}{m_{\phi}^4} e^{ib_1 \sqrt{m^2/4 - m_{\pi}^2}} \right]$$

where the propagator (Flatte' revised) is:

$$D'_{f}(m) = m^{2} - m_{f}^{2} + im\Gamma(m)$$

$$\Gamma(m) = \left[g_{\pi\pi}\sqrt{m^{2}/4 - m_{\pi}^{2}} + g_{KK}\left(\sqrt{m^{2}/4 - m_{K0}^{2}} + \sqrt{m^{2}/4 - m_{K\pm}^{2}}\right)\right] \frac{m_{f}^{2}}{m^{2}}$$
with couplings
$$g_{f\pi\pi} = \sqrt{8\pi m_{f}^{2}g_{\pi\pi}}; g_{f\pi+\pi-} = \sqrt{\frac{2}{3}}g_{f\pi\pi}$$

$$g_{fKK} = \sqrt{8\pi m_{f}^{2}g_{KK}}$$

7 free parameters: \mathbf{m}_{f} , $\mathbf{g}_{\phi f \gamma}$, $\mathbf{g}_{f K K}$, $\mathbf{g}_{f \pi \pi}$, \mathbf{a}_{0} , \mathbf{a}_{1} , \mathbf{b}_{1}

Theory: SA

(NS) by M.E.Boglione and M.R.Pennington;

$$M_{SA} = (m^2 - m_o^2)(1 - \frac{m^2}{s}) \left[(a_1 + b_1 m^2 + c_1 m^4) T_{11} + (a_2 + b_2 m^2 + c_3 m^4) T_{12} \right] e^{i\lambda}$$

where $T_{11} = T(\pi\pi \rightarrow \pi\pi)$ and $T_{12} = T(\pi\pi \rightarrow KK)$: (1-m²/s) satisfies gauge invariance requirement. From the polynomials \rightarrow coupling g_{ϕ} (GeV) residual at the f_0 pole.

8 free parameters: \mathbf{m}_0 , \mathbf{a}_1 , \mathbf{b}_1 , \mathbf{c}_1 , \mathbf{a}_2 , \mathbf{b}_2 , \mathbf{c}_2 , λ

The fits.

491 bins, 1.2 MeV wide from 420 to 1009 MeV

Free parameters: Background: m_ρ, Γ_{ρ} , α, β, a_{ρπ} Signal: depending on the fit (3 for KL, 7 NS, 8 SA)

The fits: KL

(KL) f₀(980) only:

χ^2/ndf	538/481 (3.7%)
$g^2_{f0KK}/4\pi$ (GeV ²)	2.76±0.13
R	2.66±0.10
m _{f0} (MeV)	983.0±0.6
m _p (MeV)	773.1±0.2
Γ_{ρ} (MeV)	144.0±0.3
α (x10 ⁻³)	1.65±0.05
β (x10 ⁻³)	-123±1
a _{pn}	0.0±0.6

Fit uncertainties. Covariance matrix of the 3 signal parameters:

1.0	0.56	0.0
	1.0	-0.36
		1.0

The fits: KL

Study of the systematics on the 3 $f_0(980)$ parameters: The fits are repeated with fixed "non-scalar" part

Fit	m _{f0} (MeV)	$g^2_{f0KK}/4\pi$ (GeV ²)	R
\sqrt{s} +0.5 MeV	982.5	2.88	2.77
√s -0.5 MeV	983.7	2.62	2.54
Abs.scale + 2%	985.2	2.52	2.64
Abs.scale - 2%	980.4	2.92	2.65
θ free $\rightarrow \theta = 2.3 \pm 0.2$	983.0	2.76	2.66
bin = 2.4 MeV	983.5	3.12	2.76
start = 492 MeV	983.2	2.85	2.69
start = 564 MeV	983.6	3.16	2.77
end= 1002 MeV	983.0	2.75	2.66
$\pi + \pi - \pi 0 = 0.47/2$	983.5	3.06	2.74
$\pi + \pi - \pi 0 = 0.47 * 2$	981.9	2.23	2.50
Full correction to low Ey	982.8	2.78	2.70
(1-exp(-E/b)) b=11.6	982.9	3.15	2.95
(1-exp(-E/b)) b=7.6	982.9	2.50	2.47
Back NS	987.2	2.00	2.22

Summarizing: g²_{fKK} has large systematic uncertainty

m _{f0} (MeV)	983.0 ± 0.6 $980 \div 987$
g^2_{fKK} /4 π (GeV ²)	2.76 ± 0.13 $2.0 \div 3.2$
$R = g_{fKK}^2 / g_{f\pi+\pi-}^2$	2.66 ± 0.10 $2.5 \div 2.8$

The fits: NS

χ^2/ndf	533/477 (3.6%)
m _{f0} (MeV)	977.3±0.9
$g_{ m \phi f \gamma} imes g_{ m f \pi + \pi -}$	1.46±0.05
$g_{\pi\pi}$	0.062±0.002
g _{KK}	0.117±0.017
a ₀	6.00±0.02
a ₁	4.10±0.04
b ₁ (rad/GeV)	3.13±0.05
m _o (MeV)	773.0±0.1
Γ_{ρ} (MeV)	145.1±0.1
α (x10-3)	1.64±0.04
β (x10 ⁻³)	-137±1
a _{pπ}	1.5±1.4

The fits: NS

(NS) systematics 1: dependence on the shape of the background

fit	Ρ(χ2)	m _{f0} (MeV)	$\begin{array}{c} g_{_{\varphi f\gamma}} \\ \times g_{_{f\pi+\pi-}} \end{array}$	$g_{\pi\pi}$	g _{KK}	
no σ , b_0 constrained	4.6%	977.9	1.29	0.057	0.102	
no σ , b_0 free	2.6%	978.1	1.17	0.055	0.093	
no σ , $b_0 = b_1$	2.3%	978.9	1.12	0.053	0.077	
no σ , $b_0 = 0$	1.2%	980.7	1.15	0.051	0.058	
no σ , b_0 free $b_1 = 0$	2.3%	978.7	1.13	0.053	0.081	
σ BES b_0 constrained	~10-7	983.2	0.76	0.034	<0.01	
σ E791 b ₀ constrained	~10-6	983.4	0.80	0.034	<0.01	
σ BES b ₀ free	0.1%	983.6	0.88	0.040	< 0.02	
σ E791 b ₀ free	~10-5	983.4	0.81	0.035	< 0.01	

baseline fit

Polynomial background

Second pole background

The fits: NS

(NS) systematics 2: correlation between mass and couplings

fit	m _{f0} (MeV)	$g_{\phi S\gamma}$ (GeV ⁻¹)	$g_{f\pi+\pi-}$ (GeV)	g _{fKK} (GeV)
\sqrt{s} +0.5 MeV	979.0	1.56	1.00	1.73
√s -0.5 MeV	976.2	1.39	0.98	1.67
Abs.scale + 2%	981.4	1.23	0.89	0.97
Abs.scale - 2%	973.0	1.74	1.09	2.29
bin = 2.4 MeV	976.5	1.50	1.00	1.82
start = 492 MeV	978.4	1.46	0.98	1.60
start = 564 MeV	978.5	1.45	0.98	1.58
end= 1002 MeV	977.2	1.48	1.00	1.74
$\pi + \pi - \pi 0 = 0.47/2$	976.9	1.49	1.00	1.78
$\pi + \pi - \pi 0 = 0.47 * 2$	977.7	1.47	0.99	1.68
Full correction to low Ey	977.3	1.48	0.99	1.72
$(1-\exp(-E/b)) b=11.6$	972.9	1.48	1.05	2.07
$(1-\exp(-E/b)) b=7.6$	970.0	1.47	1.08	2.27
Back KL	977.4	2.05	1.10	2.14

Summarizing.... In terms of couplings

m _{f0} (MeV)	977.3 ± 0.9 $970 \div 981$
$g_{\phi S\gamma}$ (GeV ⁻¹)	1.48 ± 0.06 $1.2 \div 2.0$
$g_{f\pi+\pi-}$ (GeV)	0.99 ± 0.02 $0.9 \div 1.1$
g _{fKK} (GeV)	1.73 ± 0.12 $1.0 \div 2.3$

Test of fit stability (on sub-samples);

In red the results outside the ranges given before for the parameters

(1) Fit KL		Ρ(χ2)	m _{f0} (MeV)	$g^2_{f0KK}/4\pi$ (GeV ²)	R
2001 data	(115 pb-1)		979.3	1.44	2.17
2002 data	(234 pb ⁻¹)		982.7	2.55	2.58
√s=1019.51	(145 pb ⁻¹)		981.4	2.18	2.54
√s=1019.67	(108 pb ⁻¹)		977.0	1.75	2.49

(2) Fit NS	Ρ(χ2)	m _{f0} (MeV)	$g_{\phi S\gamma}$ (GeV ⁻¹)	$g_{f\pi+\pi-}$ (GeV)	g _{fKK} (GeV)
2001 data (115 pb-1)		982.8	1.27	0.91	0.83
2002 data (234 pb ⁻¹)		974.7	1.56	1.03	2.01
√s=1019.51 (145 pb⁻¹)		978.3	1.54	0.99	1.72
√s=1019.67 (108 pb⁻¹)		979.8	1.56	0.98	1.45

The fits: SA

χ^2/ndf	577/477 (0.11%)
a ₁	11.9
b ₁	3.3
c ₁	-15.1
a ₂	-14.7
b ₂	-15.3
c ₂	35.8
m ₀	0.
λ (rad)	1.63
m _p (MeV)	774.4±0.2
Γ_{ρ} (MeV)	142.8±0.3
α (x10 ⁻³)	1.74±0.05
β (x10 ⁻³)	-100±18
a _{pπ}	0±2

In collaboration with M.R.Pennington

The fits: try to include the σ

(KL) $f_0(980) + \sigma_{BES}(541 \text{ MeV})$ σ coupling ~ 0 no change (KL) $f_0(980) + \sigma_{F791}(478 \text{ MeV})$ to f_0 parameters

(KL) $f_0(980) + \sigma_{\text{free mass}} \rightarrow$ found a solution with m=600 MeV

(NS) $f_0(980) \neq \int_{40}^{100} BES(541 \text{ MeV}) \text{ OR } \sigma_{E791}(478 \text{ MeV}) \rightarrow bad fit$ bad fit

The fits: comment on the background

Use $\rho - \omega$ interference pattern to test mass scale and resolution $m_{\omega} = 782.18 \pm 0.58 \text{ MeV}$ PDG value = $782.59 \pm 0.11 \text{ MeV}$ $\Gamma_{\omega} = 8.87 \pm 0.84 \text{ MeV}$ PDG value = $8.49 \pm 0.08 \text{ MeV}$

Background parameters: pion form factor (Kuhn-Santamaria parameters)

	Fit KL	Fit NS	Fit SA
m _p (MeV)	773.1	773.0	774.4
$\Gamma_{\rho}(MeV)$	144.0	145.1	142.8
α (x10 ⁻³)	1.65	1.64	1.74
β (x10 ⁻³)	-123	-137	-100

β determines the background level in the f₀(980) region → the signal size: Difference up to 5% in the f₀ region.

Discussion of the results: the lineshape

Discussion of the results: the scalar amplitude

A is the scalar amplitude: $\text{Re}(\mathbf{A})$, $\text{Im}(\mathbf{A})$, $|\mathbf{A}|$, $\phi(\mathbf{A})$ as functions of *m*: KL (solid), NS (dashed)

Discussion of the results: the f_0 parameters.

Summarizing...

		KL		NS	
m _{f0}	(MeV)	983	[980 ÷ 987]	978	[970 ÷ 981]
g _{f0KK}	(GeV)	5.9	[5.0 ÷ 6.5]	1.7	[1.6 ÷ 2.3]
$g_{f0\pi+\pi-}$	(GeV)	3.6	[3.3 ÷ 3.8]	1.0	[0.9 ÷ 1.1]
R=($g_{f0KK} / g_{f0\pi+\pi-})^2$		2.7	[2.5 ÷ 2.8]	3.0	[2.6 ÷ 4.4]
$g_{\phi f 0 g}$	(GeV ⁻¹)			1.5	[1.2 ÷ 2.0]

- 1. 5 ÷10 MeV mass difference: all within PDG 980 ±10 MeV.
- 2. Discrepancies due to a different interpretation of the line-shape: for KL *all is* f_0 , for NS there is *background also*.
- 3. Agreement on R
- 4. $g_{\phi f 0 g} >> g_{\phi M g}$ with M any pseudoscalar meson (naïve statement)

Discussion of the results: extrapolation to "off-peak" data

Discussion of the results: interpretation of the charge asymmetry

"Diluition" due to residual $\pi^+\pi^-\pi^0$ background is included. The effect is at m<600 MeV Full = data points traingles = predictions ISR+FSR Squares = predictions ISR+FSR+f_0(KL)

→KL amplitude is able to describe the observed behaviour ! Again: not a fit but an "absolute" prediction

Conclusion.

- Goto publication soon including KL and NS results (not SA).
- Main results of this analysis:
 - Observation of $\phi \rightarrow f_0(980)\gamma \rightarrow \pi^+\pi^-\gamma$;
 - Determination of $f_0(980)$ parameters;
 - Positive test of the kaon-loop model;
 - Model-Independent approach very difficult;
 - We have no sensitivity in the low mass region (we don't see any σ but this is not a good place to look for it).
- 2 fb⁻¹ analysis to be done