Off-Peak Physics

on behalf of the Peeking off-Peak group

Federico Nguyen
 Università Roma TRE - INFN Roma III

May 9th 2005

Perspectives on $\sigma_{\text {had }}$ with $2 \mathrm{fb}^{-1}$ on behalf of the group

Off-peak physics: an outline

> motivations for taking data off-peak
$>$ impact on \mathbf{a}_{μ}
> other physics items

Why should we switch off the Φ ?

in the large angle analysis, $\theta_{\pi}, \theta_{\Sigma} \in\left[\mathbf{5 0}^{\circ}, \mathbf{1 3 0}^{\circ}\right]$, the threshold is dominated by $\pi^{+} \pi^{-} \pi^{0}$

$\sigma_{\pi+\pi-\pi 0}=329.8 \mathbf{n b}$ (from C. Bini's analysis, after cuts) $\sigma_{\pi+\pi-\gamma}=4.4 \mathbf{n b}$ (from Phokhara3, after cuts)

$$
\sigma_{\pi+\pi-\pi 0}=6 \mathbf{n b}, \operatorname{sqrt}(\mathbf{s})=1003.71 \mathrm{MeV}
$$ (from SND, PRD66 (2002) 032001, after cuts)

Statistical accuracy

*ith ~ $200 \mathrm{pb}^{-1}$ off peak results are comparable with CMD-2

* their bin width $\sim \mathbf{1 5} \mathrm{MeV}$, ours is $\mathbf{0 . 0 1} \mathrm{GeV}^{2} \Leftrightarrow \mathbf{1 0 - 1 3} \mathrm{MeV}$ in $\mathbf{2 E}_{\text {beam }}$
: moreover the gap region is covered

What about a_{μ} ?

the threshold region is poorly covered by data,

1) that's why τ data entered the game in 1997
2) use of χ PT expansion at the threshold

What about a_{μ} ?

- stat. error is fully dominated by energy region $<0.35 \mathbf{G e V}^{2}$
- absolute stat. contribution to a_{μ} :
ca. $[1.5-2.5] \times 10^{-10}\left(300-100 \mathrm{pb}^{-1}\right)$
- $\left(\delta \sigma_{\pi \pi \gamma} / \sigma_{\pi \pi \gamma}\right)_{\text {syst }} \sim 2 \%$ gives ca. 2×10^{-10} (half of the total error on a_{μ}) from region below $0.35 \mathrm{GeV}^{2}$

1) the measurement would give an error (based on data directly) on a_{μ} comparable to the analytical interpolation (in a region largely weighted by the dispersion integral) 2) another comparison with existing (a few) data

Feasibility studies for $\gamma \gamma$ fusion

remark:

if no requirement is applied on $\mathrm{e}^{ \pm}$(in particular no tagging) $\gamma \gamma$ are quasi-real and the final state must have $\mathrm{J}^{\mathrm{P}}=\mathbf{0}^{ \pm}, \mathbf{2}^{ \pm}$...

only motivations we see:

1) determination of the η radiative width, $\Gamma(\eta \rightarrow \gamma \gamma)$
2) production (and discovery) of the scalar meson σ with the process $\gamma \gamma \rightarrow \sigma \rightarrow \pi \pi$

How many $\gamma \gamma$ collisions?

the $\gamma \gamma$ flux is defined as: $\quad N_{e^{+} e^{-} \rightarrow e^{+} e^{-} \text {hadrons }}=L_{e e} \int \frac{d F_{\gamma \gamma}}{d W_{y \gamma}} \sigma_{\gamma \gamma \rightarrow, \text { hadrons }}\left(W_{\gamma \gamma}\right) d W_{\gamma \gamma}$

$$
\text { with } \boldsymbol{L}_{e e}=\mathbf{2 5 0} \mathbf{p b}^{-1}
$$ vertical bars show threshold or masses we need to know detection efficiency, of course, but:

1) no loss of statistical significance stepping from 1020 MeV to 1000 MeV ,
2) no room for $\gamma \gamma \rightarrow \mathbf{f}_{0}(980)$ effects,
3) let's see also the cross sections...

What about the η ?

the tiny $\Gamma(\eta \rightarrow \gamma \gamma)$ is extracted from

integrating the $\gamma \gamma$ flux weighted by $\sigma(\gamma \gamma \rightarrow \eta)$:
$\sigma_{y \gamma \rightarrow \eta} \propto \Gamma_{\eta \rightarrow \gamma \gamma} \delta\left(\mathrm{W}_{\gamma \gamma}-\mathrm{m}_{\eta}\right)$

$$
\sigma_{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} e^{-} \eta}=\frac{64 \alpha_{\mathrm{em}}^{2}}{m_{\eta}^{3}} \ln ^{2} \frac{\mathrm{E}_{\text {beam }}}{\mathrm{m}_{\mathrm{e}}} \ln \frac{2 \mathrm{E}_{\text {beam }}}{m_{\eta}} \Gamma_{\eta \rightarrow \gamma \eta}
$$

we expect $\sim 3 \times 10^{4} \eta$ events with $L_{e e}=250 \mathbf{p b}^{-1}$ (2 months @ $5 \times 10^{31} \mathbf{c m}^{-2} \mathbf{s}^{-1}$) possible channels are $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}, \eta \rightarrow \gamma \gamma$

$$
\mathbf{B R}_{\eta \rightarrow \gamma \gamma}=(39.43 \pm 0.26) \% \quad \mathbf{B R}_{\eta \rightarrow \pi+\pi-\pi 0}=(22.6 \pm 0.4) \%
$$

What about the σ ?

$\gamma \gamma \rightarrow \sigma \rightarrow \pi \pi$ would be the cleanest way, electromagnetic production, to say if it exists and what is its mass...

The σ looks challenging

multiplying the $\gamma \gamma$ flux by the cross section $\gamma \gamma \rightarrow \sigma \rightarrow \pi \pi$:

$$
\sigma=8 \pi \frac{\Gamma_{\sigma \rightarrow \gamma} \Gamma_{\sigma} \mathrm{BR}(\sigma \rightarrow \pi \pi)}{\left(\mathrm{W}_{\gamma}^{2}-\mathrm{M}_{\sigma}^{2}\right)^{2}+\mathrm{M}_{\sigma}^{2} \Gamma_{\sigma}^{2}}
$$

$$
\Gamma_{\sigma \rightarrow \gamma \gamma}=3.8 \mathrm{keV}
$$

M. Boglione and M. R. Pennington, Eur.Phys.J.C9:11-29,1999

1) in the channel $\pi^{+} \pi^{-}$the signal is overwhelmed by ISR and FSR
2) in the neutral case, background (not interfering) channels are:

$$
\begin{aligned}
& \mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \omega \pi^{0} \rightarrow \pi^{0} \gamma \pi^{0} \\
& \mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \omega \gamma_{\text {isr }} \rightarrow \pi^{0} \gamma \gamma_{\text {isr }}
\end{aligned}
$$

$$
\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \sigma \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \pi^{0} \pi^{0}
$$ event yield with $250 \mathrm{pb}^{-1}$:

Some kinematics (I)

1. the Anulli-Courau code has been modified inserting an amplitude in χ PT
2. the process $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$ is not possible at tree level
3. the amplitude at 1 loop in χ PT has
 been implemented, no σ at the moment
4. absolute normalization still to be checked (please rely on the shape, only)
5. $\operatorname{sqrt}(s)=1 \mathrm{GeV},|\cos \theta|<0.9$ for both pions

Some kinematics (II)

1. either a structure is observed, \Rightarrow "Direct observation of the σ with KLOE"
2. or, after scanning $m_{\pi 0 \pi 0} \leq 700 \mathrm{MeV}, \Rightarrow$ "Exclusion of the σ with KLOE, at a $\ldots \%$ CL"

Off peak physics: conclusions

$>$ significant contribution with $\sim \mathbf{2 0 0} \mathbf{~ p b}^{-1}$ in
a cleaner environment for $\sigma_{\pi \pi}$
$>$ unique opportunity for settling the σ (existence
with which mass)

Perspectives on $\sigma_{\text {had }}$: an outline

> statistical considerations with $1 \mathrm{fb}^{-1}$
> benefits from the reprocessing
> preliminary studies: DC trigger

Let's normalize to $\mu \mu \gamma$

in the limit of neglecting FSR effects:

$$
\sigma_{\pi \pi}^{\mathrm{Born}} \approx \mathrm{~d} \sigma_{\pi \pi \gamma}^{\mathrm{obs}} / \mathrm{d} \sigma_{\mu \mu \gamma}^{\mathrm{obs}} \times \sigma_{\mu \mu}^{\text {Born }}
$$

as suggested by Paolo Franzini (KLOE Memo nr. 248) many systematic effects cancel out (theory) or reduce to small corrections (tracking, vertexing and DC trigger)

Luminosity	0.6%
VacuumP Polatization	0.2%
FSR resummation	0.3%
Rodiatien function $\left(H\left(s_{\pi}\right)\right)$	0.5%
Total theory systematics	0.9%

different from the normalization with Bhabha, statistics is an issue, due to the small $\mu \mu \gamma$ cross section in some bins

Statistics at large angle

only ISR at the NLO for both processes

$$
50^{\circ}<\theta_{\pi}, \theta_{\gamma}<130^{\circ}, \mathbf{E}_{\gamma}>50 \mathrm{MeV}
$$

$L=1 \mathbf{f b}^{-1}, \varepsilon=\mathbf{5 0 \%}$ flat in s^{\prime}, in both channels

evaluated with Phokhara4, J. Kühn et al. (2004)

Statistics at small angle

only ISR at the NLO for both processes

$$
\theta_{\pi \pi}<15^{\circ}, 50^{\circ}<\theta_{\pi}<130^{\circ}, \mathbf{p}_{\text {miss }}>10 \mathrm{MeV}
$$

$L=1 \mathbf{f b}^{-1}, \varepsilon=\mathbf{5 0 \%}$ flat in s^{\prime}, in both channels

New tagging algorithm

1. the requirement of 1 and only 1 vertex has been dropped
2. at least two tracks (of opposite charge), with PCA in the cylinder $|z|<15 \mathrm{~cm}$, $\rho<8 \mathrm{~cm}$
3. for $\mu \mu \gamma$ purpose, trackmass window has been enlarged, $\mathbf{m}_{\text {trk }}>80 \mathrm{MeV}$ instead of 90 MeV
4. the anti-coincidence with the RPI stream has been dropped, a downscale for events with $\mathbf{m}_{\text {miss }} \in[120,400]$ MeV is applied

Benefits in systematics: a critical overview

A look at the DC trigger in 2002: $\pi^{+} \pi^{-} \pi^{0}$

an estimator of $D C$ trigger efficiency is provided by the ratio $N_{\text {вотн }} / N_{\text {EмС }}$

- this quantity has been studied on a sample of $\pi^{+} \pi^{-} \pi^{0}$ to avoid the bias present in $\pi \pi \gamma$ events with the cluster associated to the track firing

$$
\begin{aligned}
N_{E M C} & =\varepsilon_{E M C}^{t r g} N_{T O T} \\
N_{D C} & =\varepsilon_{D C}^{t r g} N_{T O T} \\
N_{\text {BOTH }} & =\varepsilon_{E M C}^{t r g} \varepsilon_{D C}^{t r g} C_{T} N_{T O T}
\end{aligned}
$$ the EMC trigger

1. 2002 $\pi^{+} \pi^{-} \pi^{0}$ sample: runs 26566592, 26617-644, 26658-673
2. only events with 2 photons, each with $\mathrm{E}_{\gamma}>100 \mathrm{MeV}$
3. if $\alpha=$ angle btw the photons, $\alpha>15^{\circ}$, to be sure that 2 sectors are fired
4. $\mathbf{5 0}^{\circ}<\theta_{\pi}<\mathbf{1 3 0}^{\circ}$, for both tracks

A look at the DC trigger in 2002: $\pi^{+} \pi^{-} \pi^{0}$

- this estimate shows high efficiency no dependence on the polar angle of the track has been observed since $\mu \mu \gamma$ and $\pi \pi \gamma$ differ in θ, if no θ dependence of the $D C$ trigger efficiency is found \Rightarrow no particular reason for differences in $\varepsilon_{D C}{ }^{\text {trg }}$

next steps:

1. data samples for both $\mu \mu \gamma$ and $\pi \pi \gamma$
2. a detailed look at the EMC trigger sectors in the event, to minimize the bias of clusters associated to tracks

Perspectives on $\sigma_{\text {had }}$: conclusions

> the large angle analysis by the ratio has a clear goal: explore the threshold region with a high level of accuracy, we need at least $1 \mathrm{fb}^{-1}$ to be statistically competitive (e. g. made out of 2002+2005)
$>$ the ratio at small angle provides an independent check of the published result: FSR under control, bin by bin comparison with CMD-2: for that, 2002 sample is sufficient and ready data sets to date:

2002: lots of data quality studies performed, we need to reprocess them 2004: new FILFO implementation, but it suffers fake dead wires problem, they need to be re-reconstructed 2005: new FILFO and new PPGTAG
> in any case: reprocessing of the whole 2002 data set is advocated

