Off-Peak Physics

on behalf of the Peeking off-Peak group

Federico Nguyen Università Roma TRE – INFN Roma III

May 9th 2005

Perspectives on σ_{had} with 2 fb⁻¹ on behalf of the press group

> motivations for taking data off-peak

 \geq impact on a_{μ}

> other physics items

in the large angle analysis, θ_{π} , $\theta_{\Sigma} \in [50^{\circ}, 130^{\circ}]$, the threshold is dominated by $\pi^{+}\pi^{-}\pi^{0}$

 $\sigma_{\pi+\pi-\pi0}$ = 329.8 nb (from C. Bini's analysis, after cuts) $\sigma_{\pi+\pi-\gamma}$ = 4.4 nb (from Phokhara3, after cuts)

 $\sigma_{\pi+\pi-\pi0} = 6 \text{ nb}, \text{ sqrt(s)} = 1003.71 \text{ MeV}$ (from SND, PRD66 (2002) 032001, after cuts)

Statistical accuracy

with ~ 200 pb⁻¹ off peak results are comparable with CMD-2

♦ their bin width ~ 15 MeV, ours is 0.01 GeV² \Leftrightarrow 10-13 MeV in 2E_{beam}

moreover the gap region is covered

What about a_{μ} ?

the threshold region is poorly covered by data, 1) that's why τ data entered the game in 1997 2) use of χ PT expansion at the threshold

our publication did not cover the region below 0.59 GeV

What about a_{μ} ?

 stat. error is fully dominated by energy region < 0.35 GeV²

• absolute stat. contribution to $a_{\mu}^{:}$ ca. [1.5-2.5]×10⁻¹⁰ (300-100 pb⁻¹) • $(\delta \sigma_{\pi\pi\gamma} / \sigma_{\pi\pi\gamma})_{syst} \sim 2\%$ gives ca. 2×10⁻¹⁰ (half of the total error on a_{μ}) from region below 0.35 GeV²

1) the measurement would give an error (**based** on data directly) on a_{μ} comparable to the analytical interpolation (in a region largely weighted by the dispersion integral) 2) another comparison with existing (a few) data

Feasibility studies for $\gamma\gamma$ fusion

remark:

if no requirement is applied on e^{\pm} (in particular no tagging) $\gamma \gamma$ are quasi-real and the final state must have $J^{P} = 0^{\pm}, 2^{\pm}...$

only motivations we see:

1) determination of the η radiative width, $\Gamma(\eta \rightarrow \gamma \gamma)$

2) production (and discovery) of the scalar meson σ with the process $\gamma \gamma \rightarrow \sigma \rightarrow \pi \pi$

How many $\gamma\gamma$ collisions?

 $N_{e^+e^- \to e^+e^-hadrons} = L_{ee} \int \frac{dF_{\gamma\gamma}}{dW_{\gamma\gamma}} \sigma_{\gamma\gamma \to \perp hadrons}(W_{\gamma\gamma}) dW_{\gamma\gamma}$ the $\gamma\gamma$ flux is defined as: with $L_{ee} = 250 \text{ pb}^{-1}$ (nb-1 MeV-1) 10 vertical bars show solid: $E_{beam} = 510 \text{ MeV}$ threshold or masses dashed: $E_{beam} = 500 \text{ MeV}$ 10 we need to know detection $L_{ee} imes \mathbf{dF}_{\gamma\gamma} / \mathbf{dW}_{\gamma\gamma}$ ππ efficiency, of course, but: 1 1) no loss of statistical σ(?) significance stepping from 1020 MeV to 1000 MeV, 10 2) no room for $\gamma\gamma \rightarrow f_0(980)$ effects, 10 3) let's see also the cross 400 500 600 700 800 900 1000 100 200 300 sections... Wyy (MeV)

What about the $\eta\,?$

the	the tiny $\Gamma(\eta \rightarrow \gamma \gamma)$ is extracted from						
					$\mathbf{\lambda}$		
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT		
0.510±0.026 OUR FIT							
0.510 ± 0.026 OUR AVE	ERAGE				¥		
$0.51 \pm 0.12 \pm 0.05$	36	BARU	90	MD1	$e^+e^- \rightarrow e^+e^-\eta$		
$0.490 \pm 0.010 \pm 0.048$	2287	ROE	90	ASP	$e^+e^- \rightarrow e^+e^-\eta$		
$0.514 \pm 0.017 \pm 0.035$	1295	WILLIAMS	88	CBAL	$e^+ e^- \rightarrow e^+ e^- \eta$		
$0.53 \pm 0.04 \pm 0.04$		BARTEL	85E	JADE	$e^+e^- \rightarrow e^+e^-\eta$		

integrating the $\gamma\gamma$ flux weighted by $\sigma(\gamma \gamma \rightarrow \eta)$:

$$\sigma_{\gamma\gamma\to\eta} \propto \Gamma_{\eta\to\gamma\gamma} \delta(W_{\gamma\gamma} - m_{\eta}) \qquad \sigma_{e^+e^- \to e^+e^- \eta} = \frac{64 \alpha_{em}^2}{m_{\eta}^3} \ln^2 \frac{E_{beam}}{m_e} \ln \frac{2 E_{beam}}{m_{\eta}} \Gamma_{\eta\to\gamma\gamma}$$

we expect $\sim 3 \times 10^4$ η events with $L_{ee} = 250 \text{ pb}^{-1}$ (2 months @ $5 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$) possible channels are $\eta \rightarrow \pi^+ \pi^- \pi^0$, $\eta \rightarrow \gamma \gamma$

 $BR_{\eta\,\rightarrow\,\gamma\,\gamma} \!= \! (\; 39.43 \pm 0.26 \;)$ %

BR_{$\eta \to \pi + \pi - \pi 0$} = (22.6 ± 0.4) %

What about the σ ?

 $\gamma \gamma \rightarrow \sigma \rightarrow \pi \pi$ would be the cleanest way, <u>electromagnetic</u> production, to say if it exists and what is its mass... except for KLOE, fits of purely hadronic dalitz plots: model dependence/interference/rescattering?? $m_{\sigma} = 478 \text{ MeV}$ $\Gamma_{\sigma} = 324 \text{ MeV}$ presented by Prof. L Maiani, LNF, January 20th 2005 €<mark>0</mark>160 1400 $m_{\sigma} = 541 \text{ MeV}$ E791 BES II 8107 2/140 2/09 120 50 100 $\Gamma_{\sigma} = 252 \text{ MeV}$ $D^+ \rightarrow \pi^+ \pi^+ \pi^-$ 0000 $J/\psi \rightarrow \omega \pi^+\pi^-$ 19 800 80 events/ 09 600 400 20 200 0 0 0.5 1.5 2 2.5 3 8.25 $m_{\pi\pi}^2$ (GeV²/c⁴) (GeV/c²) $\mathbf{M}_{\pi\pi}$

The σ looks challenging

multiplying the $\gamma\gamma$ flux by the cross section $\gamma\gamma \rightarrow \sigma \rightarrow \pi\pi$:

$$\sigma = 8 \pi \frac{\Gamma_{\sigma \to \gamma \gamma} \Gamma_{\sigma} BR(\sigma \to \pi \pi)}{\left(W_{\gamma \gamma}^2 - M_{\sigma}^2\right)^2 + M_{\sigma}^2 \Gamma_{\sigma}^2}$$

 $\Gamma_{\sigma \rightarrow \gamma \gamma} = 3.8 \text{ keV}$ M. Boglione and M. R. Pennington, Eur.Phys.J.C9:11-29,1999

 in the channel π⁺π⁻ the signal is overwhelmed by ISR and FSR
in the neutral case, background (not interfering) channels are:

$$e^+ e^- \rightarrow \omega \ \pi^0 \rightarrow \pi^0 \ \gamma \ \pi^0$$

 $e^+ e^- \rightarrow \omega \ \gamma_{isr} \rightarrow \pi^0 \ \gamma \gamma_{isr}$

 $e^+ e^- \rightarrow e^+ e^- \sigma \rightarrow e^+ e^- \pi^0 \pi^0$, event yield with 250 pb⁻¹:

Some kinematics (I)

- 1. the Anulli-Courau code has been modified inserting an amplitude in χ PT
- 2. the process $\gamma \gamma \to \pi^0 \pi^0$ is not possible at tree level
- 3. the amplitude at 1 loop in χPT has been implemented, no σ at the moment
- absolute normalization still to be checked (please rely on the shape, only)
- 5. $sqrt(s) = 1 \text{ GeV}, |\cos \theta| < 0.9 \text{ for both}$ pions

a systematic comparison with $\omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$ is mandatory, however...

Some kinematics (II)

1. either a structure is observed, \Rightarrow "Direct observation of the σ with KLOE"

2. or, after scanning $m_{\pi 0\pi 0} \leq 700$ MeV, \Rightarrow "Exclusion of the σ with KLOE, at a ...% CL"

> significant contribution with $\sim 200 \text{ pb}^{-1}$ in

a cleaner environment for $\sigma_{\pi\pi}$

> unique opportunity for settling the σ (existence

with which mass)

> statistical considerations with 1 fb⁻¹

benefits from the reprocessing

> preliminary studies: DC trigger

Let's normalize to $\mu\mu\gamma$

in the limit of neglecting FSR effects:

 $\sigma_{\pi\pi}^{\rm Born} \approx d\sigma_{\pi\pi\gamma}^{\rm obs} / d\sigma_{\mu\mu\gamma}^{\rm obs} \times \sigma_{\mu\mu}^{\rm Born}$

as suggested by Paolo Franzini (KLOE Memo nr. 248) many systematic effects cancel out (theory) or reduce to small corrections (tracking, vertexing and DC trigger)

different from the normalization with Bhabha, statistics is an issue, due to the small μμγ cross section in some bins

Statistics at large angle

only ISR at the NLO for both processes $50^{\circ} < \theta_{\pi}, \theta_{\gamma} < 130^{\circ}, E_{\gamma} > 50 \text{ MeV}$ $L = 1 \text{ fb}^{-1}, \epsilon = 50\% \text{ flat in s', in both channels}$

statistics is competitive with CMD-2, the challenge is to keep systematic errors really small through the ratio (see below)

evaluated with Phokhara4, J. Kühn et al. (2004)

Statistics at small angle

only ISR at the NLO for both processes $\theta_{\pi\pi} < 15^{\circ}, 50^{\circ} < \theta_{\pi}, < 130^{\circ}, p_{\text{miss}} > 10 \text{ MeV}$ $L = 1 \text{ fb}^{-1}, \epsilon = 50\%$ flat in s', in both channels in the small angle region, we can give a <u>remarkable</u> cross check in the region puzzled by τ data*

* K. Maltman, hep-ph/0504201: "sum rule tests favor the reliability of τ data..."

New tagging algorithm

- the requirement of 1 and only 1 vertex has been dropped
- 2. at least two tracks (of opposite charge), with PCA in the cylinder |z| < 15 cm, $\rho < 8$ cm
- 3. for $\mu\mu\gamma$ purpose, trackmass window has been enlarged, $m_{trk} > 80$ MeV instead of 90 MeV
- the anti-coincidence with the RPI stream has been dropped, a downscale for events with m_{miss}∈[120,400] MeV is applied

Benefits in systematics: a critical overview

Acceptance	0.3~%
Trigger	0.3~%
Reconstruction Filter	0.6~%
Tracking	0.3~%
Vertex	0.3~%
Particle ID	0.1~%
Trackmass	0.2~%
Background subtraction	0.3~%
Unfolding	0.2~%
Total exp systematics	0.9~%

disabled cosmic veto, DC trigger efficiencies should cancel in the ratio

new FILFO criteria should get rid of the dependence on the mach. backgr. (only working in 2004-05, not in 2002)

tracking and vertex efficiencies should cancel in the ratio, the new vertex algorithm should decrease systematics (only in 2005, neither present in 2002, nor in 2004)

the new PPGTAG criteria do not exclude to use data (RPI stream) to evaluate the $\pi^+\pi^-\pi^0$ content (only in 2005, neither present in 2002, nor in 2004)

A look at the DC trigger in 2002: $\pi^+\pi^-\pi^0$

- an estimator of DC trigger efficiency is provided by the ratio N_{BOTH} / N_{EMC}
- this quantity has been studied on a sample of $\pi^+\pi^-\pi^0$ to avoid the bias present in $\pi\pi\gamma$ events with the cluster associated to the track firing the EMC trigger

$$N_{EMC} = \varepsilon_{EMC}^{trg} N_{TOT}$$
$$N_{DC} = \varepsilon_{DC}^{trg} N_{TOT}$$
$$N_{BOTH} = \varepsilon_{EMC}^{trg} \varepsilon_{DC}^{trg} C_T N_{TOT}$$

- 1. 2002 $\pi^+\pi^-\pi^0$ sample: runs 26566-592, 26617-644, 26658-673
- 2. only events with 2 photons, each with $E_{\gamma} > 100 \text{ MeV}$
- 3. if α = angle btw the photons, $\alpha > 15^{\circ}$, to be sure that 2 sectors are fired
- 4. $50^{\circ} < \theta_{\pi} < 130^{\circ}$, for both tracks

A look at the DC trigger in 2002: $\pi^+\pi^-\pi^0$

- no dependence on the polar angle of the track has been observed
- since $\mu\mu\gamma$ and $\pi\pi\gamma$ differ in θ , if no θ dependence of the DC trigger efficiency is found \Rightarrow no particular reason for differences in ε_{DC}^{trg}

next steps:

- 1. data samples for both $\mu\mu\gamma$ and $\pi\pi\gamma$
- a detailed look at the EMC trigger sectors in the event, to minimize the bias of clusters associated to tracks

> the large angle analysis by the ratio has a clear goal: explore the threshold region with a high level of accuracy, we need at least 1 fb⁻¹ to be statistically competitive (e.g. made out of 2002+2005) > the ratio at small angle provides an independent check of the published result: FSR under control, bin by bin comparison with CMD-2: for that, 2002 sample is sufficient and ready data sets to date: 2002: lots of data quality studies performed, we need to reprocess them

2002: lots of data quality studies performed, we need to reprocess them
2004: new FILFO implementation, but it suffers fake dead wires problem,
they need to be re-reconstructed
2005: new FILFO and new PPGTAG

> in any case: reprocessing of the whole 2002 data set is advocated