

The high luminosity sample we are acquiring opens up the possibility to move from radiative to Dalitz ϕ decays: $N_{\phi}(2fb^{-1}) \approx 7 \times 10^9$

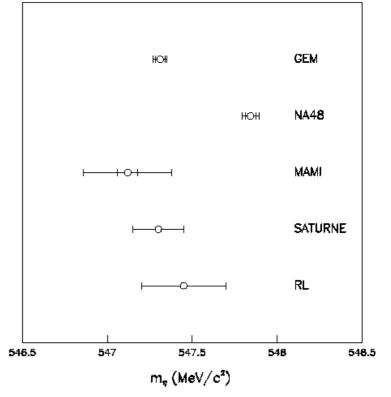
Conversion decays of low mass vector mesons $(\rho/\omega/\phi \rightarrow \pi^0(\eta) e^+e^-(\mu^+\mu^-))$ are relevant since the spectra of the di-lepton invariant mass determines the transition form factor *vs* q² and, together with the BR, test predictions of various theoretical models (VMD, lattice)

Decay	BR (PDG04)
$\phi ightarrow \pi^0 e^+ e^-$	$(1.12 \pm 0.28) \times 10^{-5}$
$\phi ightarrow \eta \; e^+ e^-$	$(1.15 \pm 0.10) \times 10^{-4}$
$\phi \rightarrow \eta \mu^+ \mu^-$	< 9.4 ×10 ⁻⁶

Theoretical expectations for BR($\phi \rightarrow \eta \,\mu^+\mu^-$): (5.3–6.8)×10⁻⁶ [Phys. Rev. C 61 (2000) 035206, Phys. Rev. D 54 (1996) 5611]

ϕ Dalitz decays: precise η mass measurement?

4 May 2005: The GEM Collaboration, hep-ex/0505006 [COSY, Julich]


Reaction used: $p+d \rightarrow ^{3}He + \eta$

 $M_n = (547.311 \pm 0.028 \pm 0.032) \text{ MeV/c}^2$

High discrepancy with NA48!

[A, Lai et al., Phys. Lett. B 533 (2002) 196]

We can use $\phi \rightarrow \eta e^+ e^-$ to measure the η mass:

N_{φηee} = N_φ BR ε_{ana} = 7×10⁹ × 1.15×10⁻⁴ × 0.3 ≈ 240,000
Search: M_{γγ}=M_η + M_{ee}=373 MeV
By using the missing mass and the √s constraint, δM ≈ O(10 keV)

<u>η decays: already studied @ KLOE</u>

 $\begin{array}{ll} \sigma_{\phi}=3.3 \ \mu b \\ BR(\phi{\rightarrow}\eta\gamma) &=(1.295\pm0.025 \)\% \end{array}$

N_η(2 fb⁻¹) ≈ 8.6 × 10⁷

Decay	BR	E _{ana}	N _{exp}	
$\eta o \gamma \gamma$	(39.43 ± 0.26) %	70%	2.4×10^{7}	
$\eta ightarrow \pi^0 \pi^0 \pi^0$	(32.51 ± 0.29)%	45%	1.3×10^{7}	
$\eta ightarrow \pi^+ \pi^- \pi^0$	$(22.6 \pm 0.4)\%$	36.5%	0.7×10^{7}	PDG04
$\eta ightarrow \pi^+ \pi^- \gamma$	(4.68 ± 0.11) %	46%	1.8×10^{6}	
$\eta ightarrow \pi^0 \gamma \gamma$	$(8.0 \pm 2.7) \times 10^{-5}$	4.63%	330	KLOE preliminary
$\eta ightarrow \pi^+ \pi^- \gamma$	< 1.3×10 ⁻⁵			KLOE
$\eta o \gamma \gamma \gamma \gamma$	< 1.6×10 ⁻⁵			published

- ★ Main BRs known with O(%) precision. Improvement requires a complete measurement of all main decay channels. $\eta \rightarrow \pi^+\pi^-\gamma$ analysis to be completed
- ***** For BR($\eta \rightarrow \pi^0 \gamma \gamma$) a factor two improvement is expected
- ***** Upper limits on $\pi^+\pi^-/\gamma\gamma\gamma$ background limited?

η decays: Dalitz and double Dalitz

Dalitz and double Dalitz decay can be reached with 2 $\rm fb^{-1}$

Decay	BR (PDG04)
$\eta ightarrow e^+ e^- \gamma$	$(6.0\pm0.8) \times 10^{-3}$
$\eta \rightarrow \mu^+ \mu^- \gamma$	$(3.1\pm0.4) \times 10^{-4}$
$\eta ightarrow e^+ e^- e^+ e^-$	6.9 ×10 ⁻⁵
$\eta ightarrow \pi^+ \pi^- e^+ e^-$	$(4.0^{+14.0}_{-2.7}) \times 10^{-4}$

All this measurements can be significantly improved and a first observation of $e^+e^-e^+e^-$ can be achieved (theoretical expectations: BR($\eta \rightarrow e^+e^-e^+e^-$) = 6.5 ×10⁻⁵ [PR 98 (1955) 1355]

Example of measurement for $e^+e^-\gamma$:

$$\begin{split} N &= 8.6 \times 10^7 \times 6 \times 10^{-3} \approx 5 \times 10^5 \\ \epsilon_{ana} &= 50\% \end{split}$$

 $\delta BR/BR \sim 0.2$ % (stat)

η' decays: main BRs

$$\sigma_{\phi} = 3.3 \ \mu b$$

BR($\phi \rightarrow \eta' \gamma$) = (6.2 ± 0.7)×10⁻⁵

 $N_{\eta}(2 \text{ fb}^{-1}) \approx 410,000$

Decay	BR (PDG04)
$\eta' ightarrow \pi^+ \pi^- \eta$	(44.3±1.5)%
$\eta' ightarrow \pi^+ \pi^- \gamma$	(29.5±1.0)%
$\eta' ightarrow \pi^0 \pi^0 \eta$	$(20.0 \pm 1.2)\%$
$\eta' \to \omega \gamma$	(3.03±0.31)%
$\eta' \to \gamma \gamma$	(2.12±0.14)%

We can try to improve the η' main BRs, which are known with errors of the order of 5–10%. This will reduce the systematics in the measurement of R= BR($\phi \rightarrow \eta' \gamma$)/BR($\phi \rightarrow \eta \gamma$) which dominate the total error

η^\prime decays: Dalitz and double Dalitz

In principle Dalitz and double Dalitz decay can be reached with 2 fb⁻¹

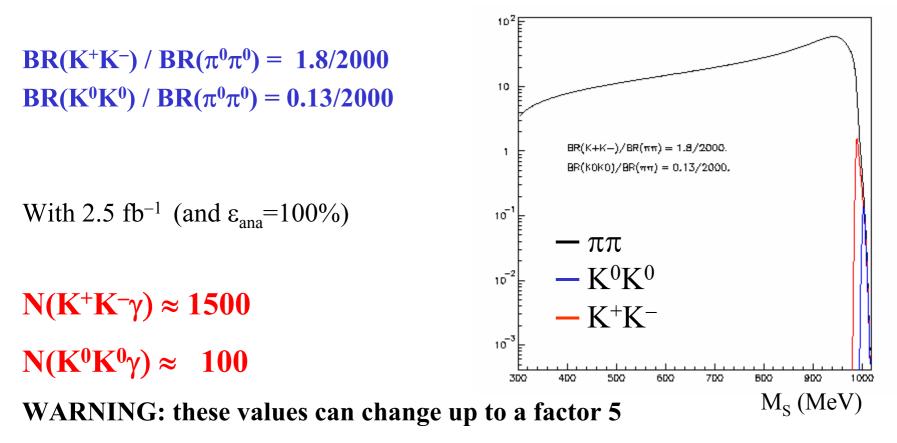
Decay	BR (PDG04)
$\eta' \rightarrow \mu^+ \mu^- \gamma$	$(1.04\pm0.26) \times 10^{-4}$
$\eta' ightarrow e^+ e^- \gamma$	< 9×10 ⁻⁴
$\eta' ightarrow \pi^+ \pi^- e^+ e^-$	< 6×10 ⁻³

- More difficult search w.r.t. the η case because of the low energy of the recoil photon (60 MeV vs 373 MeV)
- ► Large background from not-resonant processes ($e^+e^- \rightarrow e^+e^-(\gamma) / \mu^+\mu^-\gamma / \pi^+\pi^-\gamma$)

Scalar mesons: $\pi\pi/\eta\pi$ **final states**

F₀(980) → π⁰π⁰
 Statistics collected in 2001+2002: ≈ 70 kevts
 integrating all √s values, after analysis cuts.
 Experimental issues like photon pairing and
 energy resolution and knowledge/interference of
 the VDM background limit further improvements

$$>$$
 f₀(980) → π⁺π⁻ ???


 $> a_0(980) \rightarrow \eta \pi^0$ Much cleaner situation with bckg/interf. The $\pi^+\pi^-\pi^0$ channel (background free) will reach statistical precision better than % on the BR

Using 2001+2002 data, with analysis cuts:

η → γγ (BR = 39.43%) **1.2** × **10**⁴ events $η → π^+π^-π^0$ (BR = 22.6%) **4180** events

Scalar mesons: the KK final state

Using the 2000 data fit results for $f_0 \rightarrow \pi^0 \pi^0 \gamma$, it is possible to evaluate the number of events expected for the KK final state by using the M_K mass for the phase space and substituting $g_{f\pi\pi}$ with g_{fKK}

BR $\approx O(10^{-8})$ and a very soft photon... a real challenging measurement!!!

Rare ω decays

The not resonant process $e^+e^- \rightarrow \omega \pi^0$ reach a visible cross section of ~ 8 nb @ M_{ϕ}. We expect to collect **1.6×10⁷ \omega mesons**

This opens up the possibility to search for rare/medium-rare ω decays with good precision

Decay	BR (PDG04)
$\omega \to \eta \gamma$	$(4.9 \pm 0.5) \times 10^{-4}$
$\omega ightarrow \pi^0 e^+ e^-$	$(5.9 \pm 1.9) \times 10^{-4}$
$\omega \rightarrow \pi^0 \mu^+ \mu^-$	$(9.6 \pm 2.3) \times 10^{-4}$

The last two process belongs to the same categories of Dalitz decay for the vector mesons discussed for the ϕ

ϕ scan : BR($\phi \rightarrow \omega \pi^0$)

BR($\phi \rightarrow \omega \pi^0$) from $\sigma(e^+e^- \rightarrow \omega \pi^0)$ vs \sqrt{s}

Preliminary result with $\pi^+\pi^-\pi^0$ (factor 3 improvements w.r.t. SND)

$$BR(\phi \rightarrow \omega \pi^0) = (4.0 \pm 0.5_{stat} \pm 0.3_{syst}) \times 10^{-5}$$

✓ Conclude the measurement with higher statistics from ϕ scan (if available) ✓ Data @ $\sqrt{s} = M_{\phi} \pm 30$ MeV values will allow to determine the slope from our data η production from $\gamma\gamma$:

- Total width of η poorly known (10%)
- From DA Φ NE Physics Handbook: expect $\gamma\gamma$ production rates of eta mesons at $O(5 \times 10^5)/y$ @ 5 fb⁻¹/y luminosity
- One could look for final state $\eta \rightarrow \pi^+ \pi^- \pi^0$ without detecting $e^+ e^-$
- If we run below ϕ peak, we have no background from $\phi \rightarrow \pi^+ \pi^- \pi^0$

Assegno di ricerca @ LNF per eta network

Scalar mesons: the KK final state

The observation of $\phi \rightarrow (a0, f0)\gamma \rightarrow KK\gamma$ would add an important piece in the understanding of the light scalars

• A very interesting process for studying the scalars would be $\phi \rightarrow (a_0, f_0) \gamma \rightarrow \text{KK}\gamma$

With L=2 fb⁻¹ and assuming (Achasov-Gubin PRD64(2001)): $Br(\phi \rightarrow (a_0, f_0)\gamma \rightarrow K^+K^-\gamma) \sim 1-2 \times 10^{-6}$ and $Br(\phi \rightarrow (a_0, f_0)\gamma \rightarrow K^0K^0\gamma) \sim 1-4 \times 10^{-8}$

 \Rightarrow N($\phi \rightarrow (a_0, f_0)\gamma \rightarrow K^+K^-\gamma) = 6000-12000$ evts

 $\Rightarrow N(\phi \rightarrow (a_0, f_0)\gamma \rightarrow K^0 K^0 \gamma) = 70-300 \quad evts$

 \Rightarrow golden channel: $K_S K_S \gamma \rightarrow 10 - 100$ evts