Status of the $\pi^0\pi^0\gamma$ analysis

S. Giovannella, S.Miscetti

 ϕ decays meeting – 22 Feb 2005

Composition of the $\pi^0\pi^0\gamma$ **final state**

Two main contributions to $\pi^0 \pi^0 \gamma$ final state @ M_{ϕ}:

Data and Montecarlo samples

DATA

2001+2002 data : L_{int} = **450 pb⁻¹**

Data have some spread aroud the ϕ peak + two dedicated off-peak runs @ 1017 and 1022 MeV \Rightarrow

Data divided in 100 keV bins of \sqrt{s}

RAD04 MC production: $5 \times L_{int}$ GG04 MC production: $1 \times L_{int}$

Improved $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$ generator Three body phase space according to VDM from NPB 569 (2000), 158

Sample preselection and kinematic fit

- 1. Acceptance cut: 5 neutral clusters in TW with E > 7 MeV and $|\cos\theta| < 0.92$ [TW: $|T_{cl}-R_{cl}/c| < MIN(5\sigma_T, 2 \text{ ns})$]
- 2. **Kinematic fit** requiring 4-momentum conservation and the "promptness" of γ 's ($T_{cl}-R_{cl}/c=0$)
- 3. **Pairing**: best γ 's comb. for the $\pi^0 \pi^0 \gamma$ hypothesis
- 4. Kinematic fit for both γ 's pairing, requiring also constraints on π masses of the assigned $\gamma\gamma$ pairs

γ 's pairing

$$\sigma_{\rm M}/{\rm M} = 0.5$$
 ($\sigma_{\rm E_1}/{\rm E_1} \oplus \sigma_{\rm E_2}/{\rm E_2}$)

Fit function for energy resolution:

$$\sigma_{\rm E}/{\rm E} = ({\rm P}_1 + {\rm P}_2 {\rm E}) / {\rm E}[{\rm GeV}]^{\rm P_3}$$

The photon combination that minimize the following χ^2 is chosen:

$$\chi^2 = (\mathbf{M}_{\gamma_i\gamma_j} - \mathbf{M}_{\pi})/\sigma_{\mathbf{M}_{ij}} + (\mathbf{M}_{\gamma_k\gamma_l} - \mathbf{M}_{\pi})/\sigma_{\mathbf{M}_{kl}}$$

Analysis cuts

- 1. e^+e^- ? $\gamma\gamma$ rejection using the two most energetic clusters of the event: $E_1 + E_2 > 900$ MeV
- 2. $\gamma\gamma\gamma$ + accidentals background rejection: $E_{\gamma}(Fit2) > 7 \text{ MeV}$
- 3. Cut on 2nd kinematic fit: $\chi^2_{Fit2}/ndf < 3$
- 4. Cut on π masses of the assigned $\gamma\gamma$ pairs: $|\mathbf{M}_{\gamma\gamma} \mathbf{M}_{\pi}| < 5\sigma_{\mathbf{M}}$

Process	\mathcal{E}_{ana}	S/B
$e^+e^- ightarrow \omega \pi^0 ightarrow \pi^0 \pi^0 \gamma$	50.1 %	-
$\phi \rightarrow S \gamma \rightarrow \pi^0 \pi^0 \gamma$	36.8 %	-
$\phi ightarrow a_0 \gamma ightarrow \eta \pi^0 \gamma ightarrow \gamma \gamma \gamma \pi^0 \gamma$	7.0 %	22.9
$\phi o \eta \gamma o \pi^0 \pi^0 \pi^0 \gamma$	0.3 %	8.9
$\phi ightarrow \eta \gamma ightarrow \gamma \gamma \gamma \gamma$	5.4×10^{-4}	50.0
$\phi ightarrow \pi^0 \gamma$	1.5×10^{-4}	606.2
$e^+e^- \rightarrow \gamma\gamma(\gamma)$	$0.7 imes 10^{-4}$	1048.2

$$\checkmark$$
 S= $\omega\pi + S\gamma$

✓ $ε_{ana}(Sγ)$ obtained using the 2000 data M_{ππ} shape

$e^+e^- \rightarrow \gamma \gamma$ rejection

 $e^+e^- \rightarrow \gamma\gamma$ rejection done using the two most energetic clusters of the event: $E_1 + E_2 > 900 \text{ MeV}$

Dalitz plot analysis: data-MC comparison (I)

Analysis @ " $s = 1019.6 \text{ MeV} (L_{int} = 145 \text{ pb}^{-1})$

Dalitz plot analysis: data-MC comparison (II)

Analysis @ " $s = 1019.6 \text{ MeV} (L_{int} = 145 \text{ pb}^{-1})$

Background study for Dalitz plot analysis (I)

In order to study the systematics connected to the background subtraction we found for each category a distribution "background dominated" to be fitted

• $\phi \rightarrow \eta \gamma \rightarrow \pi^0 \pi^0 \pi^0 \gamma$ (most relevant bckg contribution)

> Background enriched sample : $4 < \chi^2/ndf < 20$

All of this fit results are used to evaluate the systematics on the background counting : half of the difference (1 - scale factor) is used

Background study for Dalitz plot analysis (II)

For $\phi \to \eta \gamma \to \gamma \gamma \gamma$, $\phi \to \pi^0 \gamma$, $\phi \to a_0 \gamma$ we calculate a χ^2 in the mass hypothesis

For $e^+e^- \rightarrow \gamma\gamma$, we fit the $\Delta\phi$ distribution for $\chi^2/ndf < 3$ (and no $\gamma\gamma$ rejection cut)

Dalitz plot @ vs=1019.6 MeV

Fit to the Dalitz plot with the VDM and scalar term, including also interference

Binning: 10 MeV in $M_{\pi\pi}$, 12.5 MeV in $M_{\pi\gamma}$

What is needed:

- Analysis efficiency
- Smearing matrix
- Theoretical functions

≻ ISR

Only statistical error and systematics on background considered for the moment

Analysis and pairing efficiencies vs $M_{\pi\pi}$, $M_{\pi\gamma}$

Analysis efficiency and smearing matrix evaluated from MC for each bin of the $M_{\pi\pi} - M_{\pi\gamma}$ plane

Different for the two processes!

In the fit of the Dalitz different ε_{ana} and smearing used for the VDM and scalar contributions. For the moment the VDM results are used also for the interference term

Fit function: the Achasov parametrization (II)

$$\begin{aligned} \frac{d\sigma(e^+e^- \to \pi^0\pi^0\gamma)}{dmdm_{\pi\gamma}} &= \frac{\alpha m_{\pi\gamma}m}{3(4\pi)^2 s^3} \left\{ \frac{2g_{\phi\gamma}^2}{|D_{\phi}(s)|^2} |g(m)|^2 \left| \frac{g_{f_0K^+K^-}g_{f_0\pi^0\pi^0}}{D_{f_0}(m)} \right|^2 + \\ \frac{1}{16} F_1(m^2, m_{\pi\gamma}^2) \left| \left(\frac{e^{i\phi_{\omega\phi}(m_{\phi}^2)}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + \frac{C_{\rho\pi}}{D_{\rho}(m_{\pi\gamma}^2)} + \frac{C_{\omega\pi^0}}{D_{\omega}(m_{\pi\gamma}^2)} \right|^2 + \\ \frac{1}{16} F_1(m^2, \tilde{m}_{\pi\gamma}^2) \left| \left(\frac{e^{i\phi_{\omega\phi}(m_{\phi}^2)}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi} \right) \frac{e^{i\delta_{b\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^2)} + \frac{C_{\omega\pi^0}}{D_{\omega}(\tilde{m}_{\pi\gamma}^2)} \right|^2 + \\ \frac{1}{8} F_2(m^2, m_{\pi\gamma}^2) Re \left[\left(\left(\frac{e^{i\phi_{\omega\phi}(m_{\phi}^2)}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi} \right) \frac{e^{i\delta_{b\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^2)} + \frac{C_{\omega\pi^0}}{D_{\omega}(\tilde{m}_{\pi\gamma}^2)} \right)^* \right] \right] \\ & \left\{ \left(\frac{e^{i\phi_{\omega\phi}(m_{\phi}^2)}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi} \right) \frac{e^{i\delta_{b\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^2)} + \frac{C_{\omega\pi^0}}{D_{\omega}(\tilde{m}_{\pi\gamma}^2)} \right) \right\} \\ & \left\{ \left(\frac{e^{i\phi_{\omega\phi}(m_{\phi}^2)}g_{\phi\gamma}g_{\phi\rho\pi}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi} \right) \frac{e^{i\delta_{b\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^2)} + \frac{C_{\omega\pi^0}}{D_{\omega}(\tilde{m}_{\pi\gamma}^2)} \right) \right\} \\ & \left\{ f_0 \gamma / VP \text{ interf} \right\} \\ & F_3(m^2, \tilde{m}_{\pi\gamma}^2) \left(\left(\frac{e^{i\phi_{\omega\phi}(m_{\phi}^2)}g_{\phi\pi}g_{\phi\pi\gamma}g_{\rho\pi\gamma}}{D_{\phi}(s)} + C_{\rho\pi} \right) \frac{e^{i\delta_{b\phi}}}{D_{\rho}(\tilde{m}_{\pi\gamma}^2)} + \frac{C_{\omega\pi^0}}{D_{\omega}(\tilde{m}_{\pi\gamma}^2)} \right)^* \right] \right\} \\ & \left\{ N.N.Achasov, A.V.Kiselev, private communication \right\} \end{aligned}$$

VDM parametrization: C_{VP} fixed – K_{VDM} (norm factor), $\delta_{b\rho}$, M_V, G_V free

Fit function: different parametrization for the scalar term

1. Point-like $\phi S\gamma$ coupling. Corrections to a "standard" BW-like f_0 (fixed Γ_S) described by the a_0 , a_1 parameters [Isidori-Maiani, private communication]

$$A_{1}^{\text{scal}} = \frac{e}{4F_{\Phi}} \frac{sM_{\Phi}^{2}}{D_{\Phi}(s)} \left[\frac{g_{12}^{f}g_{f\gamma}^{\Phi}}{D_{S}[(1-x)s]} + \frac{a_{0}}{M_{\Phi}^{2}} + a_{1}\frac{(1-x)s - M_{S}^{2}}{M_{\Phi}^{4}} \right]$$

2. Fit based on the hadronic scattering amplitudes ππ? ππ, ππ? KK in the π⁰π⁰γ production mechanism
[Boglione-Pennington, Eur. Phys. J. C 30 (2003) 503]
This is implemented in our fit function with the replacement:

$$\frac{g(M_{\pi\pi})g_{f_0K^+K^-}g_{f_0\pi^+\pi^-}e^{i\delta_B(M_{\pi\pi})}}{D_{f_0}(M_{\pi\pi})} \longrightarrow$$

$$(M_{\pi\pi}^2 - m_0^2)[(a_1 + b_1M_{\pi\pi}^2 + c_1M_{\pi\pi}^4)T(\pi\pi \to \pi\pi) + (a_2 + b_2M_{\pi\pi}^2 + c_2M_{\pi\pi}^4)T(KK \to \pi\pi)]$$

Calculation of the radiative corrections

ISR evaluated starting from the following σ_0 :

- f_0 = "simple" BW (by integrating the Achasov scalar term)
- $\omega \pi$ = SND parametrization from JETP-90 6 (2000) 927, obtained by fitting over a large \sqrt{s} range ... Proper threshold behaviour

	All free			$\Gamma_{\omega} = 8.49 \text{ MeV}$ $\Gamma_{\rho} = 146.4 \text{ MeV}$
vs (MeV)	1019.5	1019.6	1019.7	1019.6
$L_{int} (pb^{-1})$	77.5	145.0	110.4	145.0
M _{f0} (MeV)	962.6 ± 0.4	962.2 ± 0.2	964.0 ± 0.2	962.3 ± 0.6
$g_{fK}^{+}{}_{K}^{-}$ (GeV)	4.33 ± 0.04	4.42 ± 0.03	4.59 ± 0.02	$\textbf{4.44} \pm \textbf{0.05}$
$g_{f\pi^+\pi^-}(GeV)$	2.23 ± 0.01	2.28 ± 0.01	2.31 ± 0.01	$\textbf{2.29} \pm \textbf{0.01}$
$\cos \phi$	-0.06 ± 0.04	0.16 ± 0.04	0.02 ± 0.04	0.16 ± 0.04
M_{ρ} (MeV)	780.0 ± 0.7	780.0 ± 0.2	780.0 ± 0.4	$\textbf{780.0} \pm \textbf{0.2}$
$\Gamma_{ ho}$ (MeV)	150.0 ± 3.3	150.0 ± 1.1	150.0 ± 1.1	-
M_{ω} (MeV)	781.9 ± 0.1	782.25 ± 0.07	781.95 ± 0.05	782.2 ± 0.1
Γ_{ω} (MeV)	9.00 ± 0.01	9.000 ± 0.008	9.000 ± 0.006	-
$\delta_{\mathrm{b} ho}$ (degree)	78 ± 6	95 ± 2	94 ± 2	95 ± 3
K _{VDM}	0.84 ± 0.02	0.870 ± 0.005	0.861 ± 0.005	0.806 ± 0.006
χ^2/ndf	3529.3/2677 = 1.32	4188.1/2676 = 1.57	3688.6/2675 = 1.38	4282.2/2678 = 1.60

	All free			$\Gamma_{\omega} = 8.49 \text{ MeV}$ $\Gamma_{\rho} = 146.4 \text{ MeV}$
vs (MeV)	1019.5	1019.6	1019.7	1019.6
M _{f0} (MeV)	983.5 ± 1.2	981.3 ± 0.8	980.8 ± 0.7	981.3 ± 0.5
$\Gamma_{\rm f0}~({\rm MeV})$	43.1 ± 1.2	42.8 ± 0.7	40.5 ± 0.7	$\textbf{42.8} \pm \textbf{0.6}$
$g_{\phi f \gamma} g_{f \pi \pi}$	2.11 ± 0.07	1.99 ± 0.04	1.91 ± 0.03	$\boldsymbol{2.00 \pm 0.02}$
a ₀	3.7 ± 0.3	3.2 ± 0.1	2.8 ± 0.1	$\textbf{3.22} \pm \textbf{0.05}$
a ₁	1.0 ± 0.3	0.6 ± 0.1	0.1 ± 0.1	0.60 ± 0.06
$\cos \phi$	-0.85 ± 0.08	-0.99 ± 0.02	-0.88 ± 0.05	-0.96 ± 0.05
M_{ρ} (MeV)	780.0 ± 0.4	780.0 ± 0.2	780.00 ± 0.07	$\textbf{780.0} \pm \textbf{0.2}$
$\Gamma_{ ho}$ (MeV)	145.0 ± 3.4	145.0 ± 0.9	145.0 ± 0.7	-
M_{ω} (MeV)	782.2 ± 0.1	782.03 ± 0.08	781.99 ± 0.07	782.05 ± 0.06
Γ_{ω} (MeV)	9.000 ± 0.006	9.000 ± 0.004	9.000 ± 0.003	-
$\delta_{b_{ ho}}$ (degree)	2 ± 2	8 ± 2	5 ± 1	7 ± 1
K _{VDM}	0.720 ± 0.006	0.737 ± 0.004	0.729 ± 0.004	$\boldsymbol{0.688 \pm 0.004}$
χ^2/ndf	2613.2/2675 = 0.98	3081.3/2674 = 1.15	2917.5/2673 = 1.09	3355.7/2675 = 1.25

		All free		$\Gamma_{\omega} = 8.49 \text{ MeV}$ $\Gamma_{\rho} = 146.4 \text{ MeV}$
vs (MeV)	1019.5	1019.6	1019.7	1019.6
m ₀ (MeV)	580.2 ± 5.1	345.5 ± 0.6	471.6 ± 3.2	547.4 ± 3.2
a ₁	11.44 ± 0.03	9.345 ± 0.001	6.934 ± 0.005	19.49 ± 0.05
b ₁	2.08 ± 0.01	-2.736 ± 0.001	-18.55 ± 0.01	-20.4 ± 0.2
c ₁	-11.75 ± 0.03	-4.809 ± 0.002	9.72 ± 0.02	2.4 ± 0.1
a ₂	-15.03 ± 0.04	-10.623 ± 0.001	-10.148 ± 0.007	-26.51 ± 0.08
b ₂	-11.85 ± 0.01	-8.866 ± 0.002	28.16 ± 0.02	21.2 ± 0.3
c ₂	32.09 ± 0.02	23.060 ± 0.002	-14.39 ± 0.01	10.0 ± 0.2
$\cos\phi$	0.30 ± 0.07	0.47 ± 0.01	0.03 ± 0.05	0.41 ± 0.04
M_{ρ} (MeV)	770.0 ± 1.3	779.89 ± 0.04	770.0 ± 0.6	770.0 ± 0.2
$\Gamma_{ ho}$ (MeV)	150.0 ± 3.5	149.71 ± 0.05	150.0 ± 0.7	-
M_{ω} (MeV)	783.0 ± 0.01	782.78 ± 0.07	782.72 ± 0.09	783.00 ± 0.02
Γ_{ω} (MeV)	9.000 ± 0.006	9.000 ± 0.001	9.000 ± 0.003	-
$\delta_{\mathrm{b}\rho}$ (degree)	111 ± 2	109 ± 1	108 ± 2	113 ± 1
K _{VDM}	0.900 ± 0.006	0.904 ± 0.001	0.904 ± 0.004	0.826 ± 0.003
χ^2/ndf	3056.4/2673 = 1.14	3211.3/2672 = 1.20	3483.9/2671 = 1.30	3984.6/2673 = 1.49

The parametrization with the σ meson (I)

The σ is introduced in the scalar term as in ref. PRD 56 (1997) 4084.

- The two resonances are not described by the sum of two BW but with the matrix of the inverse propagators G_{R1R2} .
- Non diagonal terms on G_{R1R2} are the transitions caused by the resonance mixing due to the final state interaction which occured in the same decay channels R1? ab? R2

$$\frac{g_{f_0K^+K^-}g_{f_0\pi^+\pi^-}}{D_{f_0}(M_{\pi\pi})} \longrightarrow \sum g_{R_1kk} G_{RR}^{-1}g_{R_2\pi\pi}$$

Where

$$G_{R1R2} = \begin{pmatrix} D_{f0} & -\Pi_{f\sigma} \\ -\Pi_{\sigma f0} & D_{\sigma} \end{pmatrix}$$
$$\Pi_{R1R2} = \Sigma_{ab} g_{R2ab} P_{R1}^{ab} (m) + C_{R1R2}$$

 $C_{R1R2} = C_{f0\sigma}$ takes into account the contributions of VV, 4 pseudoscalar mesons and other intermediate states. In the 4q,2q models there are free parameters

The parametrization with the σ meson (II)

Extensive tests have been done on the formula used.

- Good agreement found between our coding and the one of Cesare we agreed that there is a mistype in the PRD
- We have asked also the help of G.Isidori-S.Pacetti to check this

The effect of the free term $C_{f0\sigma}$ and of its phase is large

Fit results: the Achasov parametrization with σ (I)

Fit @ 1019.7 MeV SIMPLEX only

	$f_0 + \sigma$	f ₀ only
M _{f0} (MeV)	963.7	964.0 ± 0.2
$g_{fK}^{+}{}_{K}^{-}$ (GeV)	4.41	4.59 ± 0.02
$g_{f\pi^+\pi^-}(GeV)$	2.18	2.31 ± 0.01
$M_{\sigma}(MeV)$	741.2	-
G _{олл} (GeV)	2.35	-
$ C_{f0\sigma} $ (GeV)	81.1	-
${\pmb \phi}_{{ m f}0\sigma}$	0.68	-
$\cos \phi$	0.28	0.02 ± 0.04
M_{ρ} (MeV)	780.0	780.0 ± 0.4
$\Gamma_{ ho}$ (MeV)	150.0	150.0 ± 1.1
M_{ω} (MeV)	781.91	781.95 ± 0.05
Γ_{ω} (MeV)	8.91	9.000 ± 0.006
$\delta_{b_{ ho}}$ (degree)	98	94 ± 2
K _{VDM}	0.848	0.861 ± 0.005
χ^2/ndf	3072.1/2679 = 1.15	3688.6/2675 = 1.38

Fit results: the Achasov parametrization with σ (II)

- Black (red) curve are ACH model with (without) the inclusion of the σ meson
- Blue (purple) curve are the contribution due to the f0 (σ) meson only with the ACH model when including the σ meson

Comparison between ACH-IM for the scalar term

Without the inclusion of the σ meson the agreement between ACH model and IM is not excellent although the integrals do not differ more than 20% above 700 MeV. Including the σ the agreement is better!

Conclusions

- * Fit results start giving reasonable results. Improvement due to: better binning, reduced free VDM parameters (overall scale factor $+\rho, \omega$ masses). Is the interference phase added in the right way?
- ✤ Systematics still to be included in the fit
- Achasov model without sigma does not provide a good fit to data Parameters in agreement with our old analysis
- * The Isidori-Maiani function better describes the data Still some doubts in the use of the $\pi\pi$ scattering phase
- The Boglione-Pennington parametrization provide a very unstable fit, with very different parameters for different vs
- * A preliminary test including σ in the kaon loop model shows an improvement of the fit