Status of the $\pi^{0} \pi^{0} \gamma$ analysis

S. Giovannella, S.Miscetti

Composition of the $\pi^{0} \pi^{0} \gamma$ final state

Two main contributions to $\pi^{0} \pi^{0} \gamma$ final state @ M_{ϕ} :

$$
\begin{array}{ll}
\text { 1. } & \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma \\
& \sigma_{\mathrm{vis}}\left(\mathrm{M}_{\phi}\right) \sim 0.5 \mathrm{nb}
\end{array}
$$

2. $\phi \rightarrow \boldsymbol{S} \gamma \rightarrow \pi^{0} \pi^{0} \gamma$

$$
\sigma_{\text {vis }}\left(\mathrm{M}_{\phi}\right) \sim 0.3 \mathrm{nb}
$$

Backgrounds:

Data and Montecarlo samples

DATA

$2001+2002$ data $: \mathbf{L}_{\text {int }}=450 \mathbf{p b}^{-1}$
Data have some spread aroud the ϕ peak

+ two dedicated off-peak runs @ 1017 and $1022 \mathrm{MeV} \Rightarrow$
Data divided in 100 keV bins of $\sqrt{ } s$

MC

RAD04 MC production: $5 \times \mathbf{L}_{\text {int }}$
GG04 MC production: $1 \times \mathbf{L}_{\text {int }}$
Improved $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma$ generator Three body phase space according to VDM from NPB 569 (2000), 158

Sample preselection and kinematic fit

1. Acceptance cut: 5 neutral clusters in TW with $\mathrm{E}>7 \mathrm{MeV}$ and $|\cos \theta|<0.92$
[TW: $\left|\mathrm{T}_{\mathrm{cl}}-\mathrm{R}_{\mathrm{cl}} / c\right|<\operatorname{MIN}\left(5 \sigma_{\mathrm{T}}, 2 \mathrm{~ns}\right)$]
2. Kinematic fit requiring 4-momentum conservation and the "promptness" of γ 's $\left(\mathrm{T}_{\mathrm{cl}}-\mathrm{R}_{\mathrm{cl}} / c=0\right)$
3. Pairing: best γ^{\prime} s comb. for the $\pi^{0} \pi^{0} \gamma$ hypothesis
4. Kinematic fit for both γ 's pairing, requiring also constraints on π masses of the assigned $\gamma \gamma$ pairs

γ 's pairing

π^{0} mass resolution parametrized as a function of the γ 's energy resolution after kinematic fit:
$\sigma_{\mathrm{M}} / \mathrm{M}=0.5\left(\sigma_{\mathrm{E}_{1}} / \mathrm{E}_{1} \oplus \sigma_{\mathrm{E}_{2}} / \mathrm{E}_{2}\right)$

Fit function for energy resolution:

$$
\sigma_{\mathrm{E}} / \mathrm{E}=\left(\mathrm{P}_{1}+\mathrm{P}_{2} \mathrm{E}\right) / \mathrm{E}[\mathrm{GeV}]^{\mathrm{P}_{3}}
$$

The photon combination that minimize the following χ^{2} is chosen:

$$
\chi^{2}=\left(\mathrm{M}_{\gamma i \mathrm{i} j}-\mathrm{M}_{\pi}\right) / \sigma_{\mathrm{M}_{\mathrm{ij}}}+\left(\mathrm{M}_{\gamma \mathrm{k} / \mathrm{l} 1}-\mathrm{M}_{\pi}\right) / \sigma_{\mathrm{M}_{\mathrm{kl}}}
$$

Analysis cuts

1. $e^{+} e^{-}$? $\gamma \gamma$ rejection using the two most energetic clusters of the event: $\mathbf{E}_{1}+\mathbf{E}_{2}>\mathbf{9 0 0} \mathbf{M e V}$
2. $\gamma \gamma \gamma+$ accidentals background rejection: $\mathbf{E}_{\gamma}($ Fit2 $)>7 \mathrm{MeV}$
3. Cut on $2^{\text {nd }}$ kinematic fit: χ^{2} Fit2 $/ \mathbf{n d f}<3$
4. Cut on π masses of the assigned $\gamma \gamma$ pairs: $\left|\mathbf{M}_{\nu \gamma}-\mathbf{M}_{\pi}\right|<5 \sigma_{\mathbf{M}}$

Process	$\varepsilon_{\text {ana }}$	S/B
$e^{+} e^{-} \rightarrow \omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma$	50.1%	-
$\phi \rightarrow S \gamma \rightarrow \pi^{0} \pi^{0} \gamma$	36.8%	-
$\phi \rightarrow a_{0} \gamma \rightarrow \eta \pi^{0} \gamma \rightarrow \gamma \gamma \pi^{0} \gamma$	7.0%	22.9
$\phi \rightarrow \eta \gamma \rightarrow \pi^{0} \pi^{0} \pi^{0} \gamma$	0.3%	8.9
$\phi \rightarrow \eta \gamma \rightarrow \gamma \gamma \gamma$	5.4×10^{-4}	50.0
$\phi \rightarrow \pi^{0} \gamma$	1.5×10^{-4}	606.2
$e^{+} e^{-} \rightarrow \gamma \gamma(\gamma)$	0.7×10^{-4}	1048.2

$\checkmark \mathrm{S}=\omega \pi+S \gamma$
$\checkmark \varepsilon_{\text {ana }}(S \gamma)$ obtained using the 2000 data $\mathrm{M}_{\pi \pi}$ shape

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma \gamma$ rejection

$e^{+} e^{-} \rightarrow \gamma \gamma$ rejection done using the two most energetic clusters of the event: $\mathrm{E}_{1}+\mathrm{E}_{2}>\mathbf{9 0 0} \mathrm{MeV}$

MC $\pi^{0} \pi^{0} \gamma$ events

Dalitz plot analysis: data-MC comparison (I)

Analysis @ $" s=1019.6 \mathrm{MeV}\left(\mathrm{L}_{\mathrm{int}}=145 \mathrm{pb}^{-1}\right)$

Dalitz plot analysis: data-MC comparison (II)

Analysis @ $" s=1019.6 \mathrm{MeV}\left(\mathrm{L}_{\mathrm{int}}=145 \mathrm{pb}^{-1}\right)$

χ^{2} cut

Background study for Dalitz plot analysis (I)

In order to study the systematics connected to the background subtraction we found for each category a distribution "background dominated" to be fitted

- $\phi \rightarrow \eta \gamma \rightarrow \pi^{0} \pi^{0} \pi^{0} \gamma$ (most relevant bckg contribution)
$>$ Background enriched sample : $4<\chi^{2} / \mathrm{ndf}<20$

Scale factor :
1.0156 ± 0.0002

All of this fit results are used to evaluate the systematics on the background counting : half of the difference (1 - scale factor) is used

Background study for Dalitz plot analysis (II)

For $\phi \rightarrow \eta \gamma \rightarrow \gamma \gamma \gamma, \phi \rightarrow \pi^{0} \gamma, \phi \rightarrow \mathrm{a}_{0} \gamma$ we calculate a χ^{2} in the mass hypothesis

For $e^{+} e^{-} \rightarrow \gamma \gamma$, we fit the $\Delta \phi$ distribution for $\chi^{2} / \mathrm{ndf}<3$ (and no $\gamma \gamma$ rejection cut)

Scale factor : $\mathbf{1 . 8 5} \pm \mathbf{0 . 0 3}$

Dalitz plot @ vs=1019.6 MeV

Fit to the Dalitz plot with the VDM and scalar term, including also interference

Binning: 10 MeV in $\mathrm{M}_{\pi \pi}$, 12.5 MeV in $\mathrm{M}_{\pi \gamma}$
What is needed:
$>$ Analysis efficiency
$>$ Smearing matrix
$>$ Theoretical functions
$>$ ISR
Only statistical error and systematics on background considered for the moment

Analysis and pairing efficiencies $\boldsymbol{v s} \mathbf{M}_{\pi \tau}, \mathbf{M}_{\pi v}$

Analysis efficiency and smearing matrix evaluated from MC for each bin of the $\mathrm{M}_{\pi \pi}-\mathrm{M}_{\pi \gamma}$ plane

Different for the two processes!
In the fit of the Dalitz different $\varepsilon_{\text {ana }}$ and smearing used for the VDM and scalar contributions. For the moment the VDM results are used also for the interference term

Fit function: the Achasov parametrization (I)

$>$ Scalar produced through a kaon loop

$\left.\begin{array}{ll}\mathrm{g}(\phi K K) & \text { from } \Gamma\left(\phi \rightarrow K^{+} K^{-}\right) \\ \mathrm{g}\left(\mathrm{f}_{0} K K\right) g\left(\mathrm{a}_{0} K K\right) \\ g\left(f_{0} \pi \pi\right) & g\left(\mathrm{a}_{0} \eta \pi\right)\end{array}\right\}$ fit output
$>$ VDM contribution from the following diagrams :

$>$ All interferences considered

Fit function: the Achasov parametrization (II)

$$
\begin{aligned}
& \frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \gamma\right)}{d m d m_{\pi \gamma}}=\frac{\alpha m_{\pi \gamma} m}{3(4 \pi)^{2} s^{3}}\left\{\frac{2 g_{\phi \gamma}^{2}}{\left|D_{\phi}(s)\right|^{2}}|g(m)|^{2}\left|\frac{g_{f_{0} K+K^{-}} g_{f_{0} \pi^{0} \pi^{0}}}{D_{f_{0}}(m)}\right|^{2}+\right. \\
& \frac{1}{16} F_{1}\left(m^{2}, m_{\pi \gamma}^{2}\right)\left|\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{\delta_{\rho}}}}{D_{\rho}\left(m_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(m_{\pi \gamma}^{2}\right)}\right|^{2}+ \\
& \frac{1}{16} F_{1}\left(m^{2}, \tilde{m}_{\pi \gamma}^{2}\right)\left|\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{\delta_{\rho}}}}{D_{\rho}\left(\tilde{m}_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(\tilde{m}_{\pi \gamma}^{2}\right)}\right|^{2}+ \\
& \frac{1}{8} F_{2}\left(m^{2}, m_{\pi \gamma}^{2}\right) R e\left[\left(\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{b_{\rho}}}}{D_{\rho}\left(m_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(m_{\pi \gamma}^{2}\right)}\right) \times\right. \\
& \left.\left.\left(\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{\delta_{\rho}}}}{D_{\rho}\left(\tilde{m}_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(\tilde{m}_{\pi \gamma}^{2}\right)}\right)^{*}\right] \mp\right) \\
& \begin{array}{c}
\frac{1}{\sqrt{2}} R e\left[g(m) e^{i \delta_{B}(m)} \frac{g_{f_{0} K^{+} K^{-}} g_{f_{0} \pi^{0} \pi^{0}}}{D_{f_{0}}(m)} \frac{g_{\phi \gamma}}{D_{\phi}(s)}(\right. \\
F_{3}\left(m^{2}, m_{\pi \gamma}^{2}\right)\left(\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{\delta_{\rho}}}}{D_{\rho}\left(m_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(m_{\pi \gamma}^{2}\right)}\right)^{*}+
\end{array} \\
& \begin{array}{c}
\frac{1}{\sqrt{2}} R e\left[g(m) e^{i \delta_{B}(m)} \frac{g_{f_{0} K^{+} K^{-}} g_{f_{0} \pi^{0} \pi^{0}}}{D_{f_{0}}(m)} \frac{g_{\phi \gamma}}{D_{\phi}(s)}(\right. \\
F_{3}\left(m^{2}, m_{\pi \gamma}^{2}\right)\left(\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{\phi}}}{D_{\rho}\left(m_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(m_{\pi \gamma}^{2}\right)}\right)^{*}+
\end{array} \\
& \text { Modified in } \\
& +\cos \phi(? ? ?) \\
& \left.\left.\left.F_{3}\left(m^{2}, \tilde{m}_{\pi \gamma}^{2}\right)\left(\left(\frac{e^{i \phi_{\omega \phi}\left(m_{\phi}^{2}\right)} g_{\phi \gamma} g_{\phi \rho \pi} g_{\rho \pi \gamma}}{D_{\phi}(s)}+C_{\rho \pi}\right) \frac{e^{i \delta_{\delta_{\rho}}}}{D_{\rho}\left(\tilde{m}_{\pi \gamma}^{2}\right)}+\frac{C_{\omega \pi^{0}}}{D_{\omega}\left(\tilde{m}_{\pi \gamma}^{2}\right)}\right)^{*}\right)\right]\right\},
\end{aligned}
$$

[N.N.Achasov, A.V.Kiselev, private communication]
VDM parametrization: $\mathbf{C}_{\mathbf{V P}}$ fixed $-\mathbf{K}_{\mathrm{VDM}}\left(\right.$ norm factor), $\delta_{\mathrm{b} \rho}, \mathbf{M}_{\mathrm{V}}, \mathrm{G}_{\mathrm{V}}$ free

Fit function: different parametrization for the scalar term

1. Point-like $\phi S \gamma$ coupling. Corrections to a "standard" BW-like $\mathrm{f}_{0}\left(\right.$ fixed $\left.\Gamma_{S}\right)$ described by the $\mathrm{a}_{0}, \mathrm{a}_{1}$ parameters
[Isidori-Maiani, private communication]

$$
A_{1}^{\text {scal }}=\frac{e}{4 F_{\Phi}} \frac{s M_{\Phi}^{2}}{D_{\Phi}(s)}\left[\frac{g_{12}^{f} g_{f \gamma}^{\Phi}}{D_{S}[(1-x) s]}+\frac{a_{0}}{M_{\Phi}^{2}}+a_{1} \frac{(1-x) s-M_{S}^{2}}{M_{\Phi}^{4}}\right]
$$

2. Fit based on the hadronic scattering amplitudes $\pi \pi$? $\pi \pi$, $\pi \pi$? KK in the $\pi^{0} \pi^{0} \gamma$ production mechanism [Boglione-Pennington, Eur. Phys. J. C 30 (2003) 503]
This is implemented in our fit function with the replacement:

$$
\begin{aligned}
& \frac{g\left(M_{\pi \pi}\right) g_{f_{0} K^{+} K^{-}}}{D_{f_{0} \pi^{+} \pi^{-}}\left(M_{\pi \pi}\right)} \rightarrow \\
& \left(M_{\pi \pi}^{2}-m_{0}^{2}\right)\left[\left(a_{1}+b_{1} M_{\pi \pi}^{2}+c_{1} M_{\pi \pi}^{4}\right) T(\pi \pi \rightarrow \pi \pi)+\left(a_{2}+b_{2} M_{\pi \pi}^{2}+c_{2} M_{\pi \pi}^{4}\right) T(K K \rightarrow \pi \pi)\right]
\end{aligned}
$$

Calculation of the radiative corrections

ISR evaluated starting from the following σ_{0} :
$\mathrm{f}_{0}=$ "simple" BW (by integrating the Achasov scalar term)
$\omega \pi=$ SND parametrization from JETP-90 6 (2000) 927, obtained by fitting over a large V_{s} range ... Proper threshold behaviour

$$
\sigma_{v i s}=\int_{0}^{4 m_{\pi}^{2}} \sigma_{0}[(1-x) s] H(s, x) \quad \mathrm{H}(\mathrm{~s}, \mathrm{x}) \text { from Antonelli, Dreucci }
$$

Fit results: the Achasov parametrization

Fit results: the Achasov parametrization

Fit results: the Isidori-Maiani parametrization

Fit results: the Isidori-Maiani parametrization

Fit results: the Isidori-Maiani parametrization

Fit results: the Isidori-Maiani parametrization

Fit results: the Boglione-Pennington parametrization

Fit results: the Boglione-Pennington parametrization

Fit results: the Boglione-Pennington parametrization

Fit results: the Boglione-Pennington parametrization

Fit results: the Achasov parametrization

	All free			$\Gamma_{\omega}=8.49 \mathrm{MeV}$ $\Gamma_{\rho}=146.4 \mathrm{MeV}$
vs (MeV)	1019.5	1019.6	1019.7	$\mathbf{1 0 1 9 . 6}$
$\mathrm{~L}_{\mathrm{int}}\left(\mathrm{pb}^{-1}\right)$	77.5	145.0	110.4	$\mathbf{1 4 5 . 0}$
$\mathrm{M}_{\mathrm{f} 0}(\mathrm{MeV})$	962.6 ± 0.4	962.2 ± 0.2	964.0 ± 0.2	$\mathbf{9 6 2 . 3} \pm \mathbf{0 . 6}$
$\mathrm{g}_{\mathrm{fK} \mathrm{K}^{+}-(\mathrm{GeV})}$	4.33 ± 0.04	4.42 ± 0.03	4.59 ± 0.02	$4.44 \pm \mathbf{0 . 0 5}$
$\mathrm{g}_{\mathrm{f}^{+} \pi^{-}-(\mathrm{GeV})}$	2.23 ± 0.01	2.28 ± 0.01	2.31 ± 0.01	$\mathbf{2 . 2 9} \pm \mathbf{0 . 0 1}$
$\cos \phi$	-0.06 ± 0.04	0.16 ± 0.04	0.02 ± 0.04	$\mathbf{0 . 1 6} \pm \mathbf{0 . 0 4}$
$\mathrm{M}_{\rho}(\mathrm{MeV})$	780.0 ± 0.7	780.0 ± 0.2	780.0 ± 0.4	$\mathbf{7 8 0 . 0} \pm \mathbf{0 . 2}$
$\Gamma_{\rho}(\mathrm{MeV})$	150.0 ± 3.3	150.0 ± 1.1	150.0 ± 1.1	
$\mathrm{M}_{\omega}(\mathrm{MeV})$	781.9 ± 0.1	782.25 ± 0.07	781.95 ± 0.05	$\mathbf{7 8 2 . 2} \pm \mathbf{0 . 1}$
$\Gamma_{\omega}(\mathrm{MeV})$	9.00 ± 0.01	9.000 ± 0.008	9.000 ± 0.006	
$\delta_{\mathrm{b}_{\rho}}(\mathrm{degree})$	78 ± 6	95 ± 2	94 ± 2	$\mathbf{-}$
$\mathrm{~K}_{\mathrm{VDM}}$	0.84 ± 0.02	0.870 ± 0.005	0.861 ± 0.005	$\mathbf{0 . 8 0 6} \pm \mathbf{0 . 0 0 6}$
χ^{2} / ndf	$3529.3 / 2677=1.32$	$4188.1 / 2676=1.57$	$3688.6 / 2675=1.38$	$4282.2 / 2678=\mathbf{1 . 6 0}$

Fit results: the Isidori-Maiani parametrization

	All free			$\begin{aligned} & \Gamma_{\omega}=8.49 \mathrm{MeV} \\ & \Gamma_{\rho}=146.4 \mathrm{MeV} \end{aligned}$
vs (MeV)	1019.5	1019.6	1019.7	1019.6
$\mathrm{M}_{\mathrm{f0}}(\mathrm{MeV})$	983.5 ± 1.2	981.3 ± 0.8	980.8 ± 0.7	981.3 ± 0.5
$\Gamma_{\mathrm{f0}}(\mathrm{MeV})$	43.1 ± 1.2	42.8 ± 0.7	40.5 ± 0.7	42.8 ± 0.6
$\mathrm{g}_{\phi ¢ \gamma} \mathrm{~g}_{\mathrm{f} \pi \pi}$	2.11 ± 0.07	1.99 ± 0.04	1.91 ± 0.03	2.00 ± 0.02
a_{0}	3.7 ± 0.3	3.2 ± 0.1	2.8 ± 0.1	3.22 ± 0.05
a_{1}	1.0 ± 0.3	0.6 ± 0.1	0.1 ± 0.1	0.60 ± 0.06
$\cos \phi$	-0.85 ± 0.08	-0.99 ± 0.02	-0.88 ± 0.05	-0.96 ± 0.05
$\mathrm{M}_{\rho}(\mathrm{MeV})$	780.0 ± 0.4	780.0 ± 0.2	780.00 ± 0.07	780.0 ± 0.2
$\Gamma_{\rho}(\mathrm{MeV})$	145.0 ± 3.4	145.0 ± 0.9	145.0 ± 0.7	-
$\mathrm{M}_{\omega}(\mathrm{MeV})$	782.2 ± 0.1	782.03 ± 0.08	781.99 ± 0.07	782.05 ± 0.06
$\Gamma_{\omega}(\mathrm{MeV})$	9.000 ± 0.006	9.000 ± 0.004	9.000 ± 0.003	-
$\delta_{\mathrm{b}_{\rho}}$ (degree)	2 ± 2	8 ± 2	5 ± 1	7 ± 1
$\mathrm{K}_{\mathrm{VDM}}$	0.720 ± 0.006	0.737 ± 0.004	0.729 ± 0.004	0.688 ± 0.004
χ^{2} / ndf	$2613.2 / 2675=0.98$	3081.3/2674 $=1.15$	2917.5/2673 $=1.09$	3355.7/2675 = 1.25

Fit results: the Boglione-Pennington parametrization

	All free			$\Gamma_{\omega}=8.49 \mathrm{MeV}$ $\Gamma_{\rho}=146.4 \mathrm{MeV}$
vs (MeV)	1019.5	1019.6	1019.7	$\mathbf{1 0 1 9 . 6}$
$\mathrm{~m}_{0}(\mathrm{MeV})$	580.2 ± 5.1	345.5 ± 0.6	471.6 ± 3.2	$\mathbf{5 4 7 . 4} \pm \mathbf{3 . 2}$
a_{1}	11.44 ± 0.03	9.345 ± 0.001	6.934 ± 0.005	$\mathbf{1 9 . 4 9} \pm \mathbf{0 . 0 5}$
b_{1}	2.08 ± 0.01	-2.736 ± 0.001	-18.55 ± 0.01	$-\mathbf{2 0 . 4} \pm \mathbf{0 . 2}$
c_{1}	-11.75 ± 0.03	-4.809 ± 0.002	9.72 ± 0.02	$\mathbf{2 . 4} \pm \mathbf{0 . 1}$
a_{2}	-15.03 ± 0.04	-10.623 ± 0.001	-10.148 ± 0.007	$\mathbf{- 2 6 . 5 1} \pm \mathbf{0 . 0 8}$
b_{2}	-11.85 ± 0.01	-8.866 ± 0.002	28.16 ± 0.02	$21.2 \pm \mathbf{0 . 3}$
c_{2}	32.09 ± 0.02	23.060 ± 0.002	-14.39 ± 0.01	$\mathbf{1 0 . 0} \pm \mathbf{0 . 2}$
$\cos \phi$	0.30 ± 0.07	0.47 ± 0.01	0.03 ± 0.05	$\mathbf{0 . 4 1} \pm \mathbf{0 . 0 4}$
$\mathrm{M}_{\rho}(\mathrm{MeV})$	770.0 ± 1.3	779.89 ± 0.04	770.0 ± 0.6	$770.0 \pm \mathbf{0 . 2}$
$\Gamma_{\rho}(\mathrm{MeV})$	150.0 ± 3.5	149.71 ± 0.05	150.0 ± 0.7	-
$\mathrm{M}_{\omega}(\mathrm{MeV})$	783.0 ± 0.01	782.78 ± 0.07	782.72 ± 0.09	$\mathbf{7 8 3 . 0 0} \pm \mathbf{0 . 0 2}$
$\Gamma_{\omega}(\mathrm{MeV})$	9.000 ± 0.006	9.000 ± 0.001	9.000 ± 0.003	
$\delta_{\mathrm{b}_{\rho}}(\mathrm{degree})$	111 ± 2	109 ± 1	108 ± 2	-
$\mathrm{K}_{\mathrm{VDM}}$	0.900 ± 0.006	0.904 ± 0.001	0.904 ± 0.004	$\mathbf{0 . 8 2 6} \pm \mathbf{0 . 0 0 3}$
χ^{2} / ndf	$3056.4 / 2673=1.14$	$3211.3 / 2672=1.20$	$3483.9 / 2671=1.30$	$3984.6 / 2673=\mathbf{1 . 4 9}$

The parametrization with the σ meson (I)

The σ is introduced in the scalar term as in ref. PRD 56 (1997) 4084.

- The two resonances are not described by the sum of two BW but wth the matrix of the inverse propagators $\mathrm{G}_{\mathrm{R} 1 \mathrm{R} 2}$.
- Non diagonal terms on $\mathrm{G}_{\mathrm{R} 1 \mathrm{R} 2}$ are the transitions caused by the resonance mixing due to the final state interaction which occured in the same decay channels R1? ab? R2

$$
\frac{g_{f_{0} K^{+} K^{-}} g_{f_{0} \pi^{+} \pi^{-}}}{D_{f_{0}}\left(M_{\pi \pi}\right)} \longrightarrow \sum g_{R k k} G_{R R}-g_{R_{2} \pi \pi}
$$

Where

$$
\begin{aligned}
\mathrm{G}_{\mathrm{R} 1 \mathrm{R} 2} & =\left(\begin{array}{cc}
\mathrm{D}_{\mathrm{f} 0} & -\Pi_{\mathrm{f} \sigma} \\
-\prod_{\sigma f 0} & \mathrm{D}_{\sigma}
\end{array}\right) \\
\Pi_{\mathrm{R} 1 \mathrm{R} 2} & =\Sigma_{\mathrm{ab}} \mathrm{~g}_{\mathrm{R} 2 \mathrm{ab}} \mathrm{P}_{\mathrm{R} 1}{ }^{\mathrm{ab}}(\mathrm{~m})+\mathrm{C}_{\mathrm{R} 1 \mathrm{R} 2}
\end{aligned}
$$

$\mathrm{C}_{\mathrm{R} 1 \mathrm{R} 2}=\mathrm{C}_{\mathrm{f} 0 \sigma}$ takes into account the contributions of VV, 4 pseudoscalar mesons and other intermediate states. In the $4 \mathrm{q}, 2 \mathrm{q}$ models there are free parameters

The parametrization with the σ meson (II)

Extensive tests have been done on the formula used.

- Good agreement found between our coding and the one of Cesare we agreed that there is a mistype in the PRD
- We have asked also the help of G.Isidori-S.Pacetti to check this

The effect of the free term $\mathrm{C}_{\mathrm{f} 0 \mathrm{c}}$ and of its phase is large

Fit results: the Achasov parametrization with σ (I)

Fit @ 1019.7 MeV SIMPLEX only

	$\mathrm{f}_{0}+\sigma$	f_{0} only
$\mathrm{M}_{\mathrm{f} 0}(\mathrm{MeV})$	963.7	964.0 ± 0.2
$\mathrm{~g}_{\mathrm{fK} \mathrm{K}^{+}}-(\mathrm{GeV})$	4.41	4.59 ± 0.02
$\mathrm{~g}_{\mathrm{f} \pi^{+} \pi^{\prime}}-(\mathrm{GeV})$	2.18	2.31 ± 0.01
$\mathrm{M}_{\sigma}(\mathrm{MeV})$	741.2	-
$\mathrm{G}_{\sigma \pi \pi}(\mathrm{GeV})$	2.35	-
$\mid \mathrm{C}_{\mathrm{f} 0 \sigma}(\mathrm{GeV})$	81.1	-
$\phi_{\mathrm{f} 0 \sigma}$	0.68	-
$\cos \phi$	0.28	0.02 ± 0.04
$\mathrm{M}_{\rho}(\mathrm{MeV})$	780.0	780.0 ± 0.4
$\Gamma_{\rho}(\mathrm{MeV})$	150.0	150.0 ± 1.1
$\mathrm{M}_{\omega}(\mathrm{MeV})$	781.91	781.95 ± 0.05
$\Gamma_{\omega}(\mathrm{MeV})$	8.91	9.000 ± 0.006
$\delta_{\mathrm{b}_{\rho}}(\mathrm{degree})$	98	94 ± 2
$\mathrm{~K}_{\mathrm{VDM}}$	0.848	0.861 ± 0.005
χ^{2} / ndf	$3072.1 / 2679=1.15$	$3688.6 / 2675=1.38$

Fit results: the Achasov parametrization with σ (II)

- Black (red) curve are ACH model with (without) the inclusion of the σ meson
- Blue (purple) curve are the contribution due to the f0 (σ) meson only with the ACH model when including the σ meson

Comparison between $\mathrm{ACH}-\mathrm{IM}$ for the scalar term

Without the inclusion of the σ meson the agreement between ACH model and IM is not excellent although the integrals do not differ more than 20% above 700 MeV . Including the σ the agreement is better!

Conclusions

* Fit results start giving reasonable results. Improvement due to: better binning, reduced free VDM parameters (overall scale factor $+\rho, \omega$ masses). Is the interference phase added in the right way?
* Systematics still to be included in the fit
* Achasov model without sigma does not provide a good fit to data Parameters in agreement with our old analysis
* The Isidori-Maiani function better describes the data Still some doubts in the use of the $\pi \pi$ scattering phase
* The Boglione-Pennington parametrization provide a very unstable fit, with very different parameters for different vs
* A preliminary test including σ in the kaon loop model shows an improvement of the fit

