Study of Scalar Mesons in $\pi^+\pi^-\gamma$ events with the KLOE detector

```
(0) Motivations of this analysis
(1) Event Selection
[see C.Bini, S.Ventura, KLOE Memo 284]
(2) The data sample: what we measure
(3) Fit to the data
(4) Interpretation of the results
(5) Conclusions (=answers to (0))
```

(0)Motivations of this analysis:

Look for $f_0(980) \rightarrow \pi^+\pi^-$ signal Extraction of the "coupling" of the $f_0(980)$ to the $\phi(1020)$: s-quark content of f_0 Any further meson $(f_0(600)=\sigma)$ is needed to describe the spectrum ? Comparison between different approaches for the $\phi \rightarrow$ scalar + γ amplitude descriptions

(1) Event selection

• Vertex in I.R. (r_{xv} < 8 cm, |Z|< 10 cm)with 2 opposite charge tracks $45^{\circ} < \theta < 135^{\circ}$; (2)Both tracks extrapolated to calorimeter TCA + Likelihood (in AND); \rightarrow [reduce $e^+e^-\gamma$] $(3)P_{\text{miss}} = P_{\phi} - P_{t1} - P_{t2}; 45^{\circ} < \theta(P_{\text{miss}}) < 135^{\circ};$ \rightarrow [photon at "large angle" reduce ISR] (4) Trackmass: $129 < M_{\pi} < 149 \text{ MeV};$ \rightarrow [reduce $\mu^+\mu^-\gamma$ and $\pi^+\pi^-\pi^0$] (5)Request of the photon: a neutral cluster with $\Omega \propto \arccos(p_{cl} \cdot P_{miss}) < 0.03 + 3/E_{\gamma}(MeV) rad;$ \rightarrow [further reduction of $\pi^+\pi^-\pi^0$ and of $\pi^+\pi^-$]

Cut on the likelihood variables (AND)

Cut on the Ω variable

Efficiency:

Filfo efficiency: negligible dependence on the machine bck thanks to the photon

Vetocos efficiency from pre-scaled events: very important correction.

 $M(\pi\pi)$ (MeV)

(2) The data sample

sample	Lumin. (pb ⁻¹)	#events	Rate (nb)
2001	115	221178	1.923
2002	234	454412	1.942
total	349	675590	1.936

M($\pi\pi$) spectrum: [410 - 1020 MeV] Comparison between 2001 and 2002 spectra

What happens if the photon is not explicitely required ?


```
Generation and reconstruction of

e^+e^- \rightarrow \pi^+\pi^- with no radiation (and no BES):

(1)Do they explain the huge background when

no \gamma is requested ?

(2)How much bckg after \gamma request ?
```


Other variables that can be studied:

 $M(\pi\pi)$ (MeV)

(3)Fit to the data

Strategy: fit of the full m spectrum with:

A is the $\phi \rightarrow$ Scalar + γ amplitude:

$$A(\phi \to S\gamma \to \pi^+\pi^-\gamma) = -\frac{esm_{\phi}^2}{4f_{\phi}D_{\phi}(s)} \{M\}$$

M is the "model". We have considered: KL = Kaon-loop model [N.N.Achasov et al] NS = No Structure model [G.Isidori, L.Maiani]

$$M_{KL} = \frac{2g_{f\pi+\pi-}g(m^2)e^{i\delta_m(\theta)}}{D_f^{(1)}(m^2)(s-m^2)}$$
$$M_{NS} = \left[\frac{g_{f\pi+\pi-}g_{\phi f\gamma}}{D_f^{(2)}(m^2)} + \frac{c_0}{m_{\phi}^2} + c_1\frac{m^2 - m_f^2}{m_{\phi}^4}\right]e^{i\lambda}$$

Parameters:

(KL) $m(f_0)$, g_{fKK} , $g_{f\pi+\pi-}$ (NS) $m(f_0)$, $\Gamma(f_0)$, $g_{f\pi+\pi-} \times g_{\phi f\gamma}$, c_0 , c_1 , λ

+ for the "background" $M(\rho^0) \Gamma(\rho^0) \alpha \beta a_{\rho\pi}$

KL fit

NS fit

Fit results: values of the parameters

		KL	NS
	χ^2/dof	541 / 481	540 / 478
	$M(\rho^0)$ (MeV)	773.3 ± 0.2	773.7 ± 0.3
"background"	$\Gamma(\rho^0)$ (MeV)	144.1 ± 0.3	145.0 ± 0.5
parameters	α (×10 ⁻³)	1.68 ± 0.05	1.70 ± 0.05
	β (×10 ⁻³)	-122 ± 2	-126 ± 2
	a _{ρπ}	Compatible with	0 and with 1
	M(f ₀) (MeV)	983.7±0.6	984.6±0.5
"signal"	$\Gamma(f_0)$ (MeV)		21.3±1.1
parameters	$g^2_{\rm fKK}/4\pi$ (GeV ²)	3.4±0.6	
	$R=g_{fKK}^2/g_{f\pi+\pi-}^2$	2.82±0.08	
	$g_{\pm\pi+\pi-} \times g_{\phi\pm\gamma}$		1.58±0.05
	c0		7.8±0.3
	c ₁		8.0±0.2
	λ		0.80±0.32

Study of systematic uncertainties on the fitted parameters: KL fit

	$g^2_{f0KK}/4\pi$ (GeV) ²	R	m _{f0} (MeV)
Fit cond. (bin,ranges)	±1.0	±0.18	±1.2
Abs.Scale ± 2%	±0.3	±0.02	±0.2
γ eff cut ± 2 MeV	±0.2	±0.15	±2.6
$vs \pm 0.5 MeV$	±0.3	±0.28	±1.2
$ heta \pm$ 1 std.d.	±0.2	±0.17	±2.1
STAT	±0.6	±0.08	±0.6

(4) Interpretation of the results

(4.3) Is there any
$$\sigma$$
?
"Easy" to implement in the KL frame

$$\frac{g_{fKK}g_{f\pi+\pi-}}{D_f(m)} \rightarrow \sum_{R,R'} (g_{RKK}G_{RR'}^{-1}g_{R'\pi+\pi-})$$

$$G_{RR'}(m) = \begin{pmatrix} D_f(m) & -\Pi_{f\sigma}(m) \\ -\Pi_{\sigma f}(m) & D_{\sigma}(m) \end{pmatrix}$$

$$4 \text{ extra parameters:}$$

$$M(\sigma), g_{\sigma KK}, g_{\sigma \pi+\pi-}, m)$$

First try: -f₀ param. slightly changed -bckg param. unchanged -narrow and weakly coupled σ "found" around 600 MeV

(4.5) The coupling of the
$$f_0$$
 to the ϕ
KL Fit:
 $g_{fKK} = 6.4 \text{ GeV}$
 $g_{f\pi+\pi-} = 3.9 \text{ GeV}$
Compare with KLOE
 $\pi^0\pi^0\gamma$ and $\eta\pi^0\gamma$ analyses
 $"BR" = 21.5 \times 10^{-5}$
 $"BR" = \frac{1}{\sigma(\phi)} \int \left(\frac{d\sigma}{dm}(|A|^2)\right)_{scalar} dm$
 $\Gamma(f_0 \to \pi^+\pi^-) = \frac{g_{f\pi\pi}^2 p_{12}(m_f)}{8\pi m_f^2}$

Internal use only

(5) Conclusions

Clear evidence of $f_0(980) \rightarrow \pi^+\pi^$ signal: we are able to describe it; The coupling of the $f_0(980)$ to the $\phi(1020)$ is "large" (even in the NS approach); No σ is needed: higher statistics (2) fb⁻¹) can clarify "narrow structures"; Comparison between different models: no one "wins".

```
STOP here now.
```

```
THEN a step forward for a "precision" analysis with 2-2.5 fb<sup>-1</sup> :
```

```
(1)Big work on simulation (it is starting now a new phokhara);
(2)Refine the ε<sub>γ</sub>(m) knowledge;
(3)Run @ M(φ)-10 MeV probably
"unavoidable" (a study is in progress).
```

Trkmass efficiency: data/MC ratio TCA + likelihood efficiency from a $\pi^+\pi^-\pi^0$ control sample

