lnf 3/1/05 Radiative meeting

Studying FSR at threshold for $\pi\pi\gamma$ events

O. Shekhovtsova, G.V.

Disclaimer: everything is preliminary!!!

Generalization of FSR amplitude: we need 3 form factors f_i .

$$<\pi^{+}\pi^{-}\gamma \mid j^{\mu} \mid 0 >= ie^{2}\varepsilon_{v}^{*}M_{F}^{\mu\nu}$$
$$M_{F}^{\mu\nu} = f_{1}\tau_{1}^{\mu\nu} + f_{2}\tau_{2}^{\mu\nu} + f_{3}\tau_{3}^{\mu\nu}$$

Each form factor depends by 3 independent variables (one is *s*)

$$\lim_{k \to 0} f_1 = f_1^{sQED} = \frac{2k \cdot QF_{\pi}(s)}{(k \cdot Q)^2 - (k \cdot l)^2}$$
$$\lim_{k \to 0} f_2 = f_2^{sQED} = \frac{2F_{\pi}(s)}{(k \cdot Q)^2 - (k \cdot l)^2}$$
$$\lim_{k \to 0} f_3 = f_3^{sQED} = 0$$

Limit of soft photon (what we call sQED)

At threshold (very hard photon) this approximation could not work

A model for FSR, based on χPT

(S. Dubinsky et al, hep-ph/041113)

 $f_i = f_i^{SQED} + \Delta f_i$

The contribution with $\rho^{+,-}$ (instead of a_1), turns out to be negligible

Meson	M(GeV)	G _V (GeV)	F _V (GeV)	F _A (GeV)
ρ	0.775	0.0066	0.156	-
a ₁	1.23	_	-	0.122

•The model is a first step in the direction of a generalization of the FSR amplitude.

However, the calculation (at the moment) is approximate since:

- it doesn't take into account other mesons (like ω and ρ ')
- it doesn't include the $\phi \rightarrow \pi^+ \pi^- \gamma$ decay

-

```
What about \phi \rightarrow \pi^+ \pi^- \gamma decay ?
```

Recently H. Czyz et al. (hep-ph/0412239) showed that this decay can be important also at low Q^2 region. This contribution can be quite different depending by the model. Charge asymmetry can help.

How to include $\phi \rightarrow \pi^+ \pi^- \gamma$ decay in our calculation?

• $\phi \rightarrow \pi^+ \pi^- \gamma$ is related to $\phi \rightarrow \pi^0 \pi^0 \gamma$ by the same matrix element (a part a factor $\frac{1}{2}$). We use the Achasov 4q parametrization with the parameters of the model taken from the fit of the kloe data $\phi \rightarrow \pi^0 \pi^0 \gamma$.

$$f(Q^{2}) = \frac{g_{\varphi\kappa^{+}\kappa^{-}}g_{f_{0}\kappa^{+}\kappa^{-}}g_{f_{0}\pi^{+}\pi^{-}}}{2\pi^{2}m_{K}^{2}}I(\frac{m_{\varphi^{2}}}{m_{K}^{2}},\frac{Q^{2}}{m_{K}^{2}})\frac{e^{i\delta_{B}(Q^{2})}}{(m_{f_{0}}^{2}-Q^{2}+\operatorname{Re}\Pi_{f_{0}}(m_{f_{0}}^{2})-\Pi_{f_{0}}(Q^{2}))}$$
For the moment we consider only the contribution of f_{θ} (no σ meson).
This could be too crude at low Q² !!!

$$g_{0}^{2}g_$$

(Analitical) Comparisons (at $s=m_{\phi}^{2}$):

What happens for $s < m_{\phi}^2$?

The comparison at s=1 GeV²:

In this case the interference $M_{FSR}^*M_{\phi}$ is expected to be $>>|M_{\phi}|^2$

The following matrix element has been introduced in a MC, for $e^+e^- \rightarrow \pi^+\pi^-\gamma$ (based on EVA structure):

$$d\sigma \approx |M_{ISR} + M_{FSR_{\chi PT}} + M_{\varphi}|^{2} \cong |M_{ISR} + M_{FSR_{\chi PT}}|^{2} + |M_{\varphi}|^{2} + 2\operatorname{Re}((M_{ISR} + M_{FSR_{SQED}}) \bullet M_{\varphi}^{*})$$

•We neglect the contributions from $\gamma^* \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \gamma$ (found negligible in *hep-ph/0411113*)

•We consider destructive interference between FSR_{sOED} and ϕ

•We consider large angle analysis: $50^{\circ} < \theta_{\gamma} < 130^{\circ}$, $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Effect al low Q^2 ...however the contribution of ϕ is not much accurate (no interference with σ has been taken into account)

And asymmetry....

Zoom on the threshold region:

Up to 30% of contribution beyond sQED at the threshold

And asymmetry...

Conclusions and outlook

•First MC results on a generalization of FSR using χ PT have been presented.

•A sizeable effect can be seen on the cross section (at low Q^2).

•The situation on the asymmetry is less clear, but it strongly depends on the parametrization of the ϕ direct decay

•For the near future:

•Improve the simulation:

•better parametrization of ϕ (including also the σ meson)

•consistency between the various parameters of the models in MC

- •Try to disentangle the various contributions:
 - •Improve the knowledge on the phi decay (in particular at low Q²):

•Constraint fit with the neutral channel

•asymmetry,and other kinematical variables (angular distributions)

•<u>Work off resonance</u>

• Model independent analysis of f_i ?