Measurement of the luminosity

F. Nguyen, A. Denig

Decays

February 3rd 2005

- > Motivations: the error on $\sigma_{\pi\pi(\gamma)}$
- Selection criteria of VLAB events
- Comparisons among MC codes
- Acceptance
- Clustering
- Background
- Cosmic veto
- > Dependence on $s^{1/2}$

Luminosity	0.6~%
Vacuum Polarization	0.2~%
FSR resummation	0.3~%
Radiation function $(H(s_{\pi}))$	0.5~%
Total theory systematics	0.9~%

Large Angle Bhabha filter

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

luminosity is given by Bhabha events divided for a σ evaluated folding theory (QED rad. corrs.) with the detector simulation

Very Large Angle Bhabha requirements

LAB filter: mainly EMC cuts, except for N_{hits}> 50 2 clusters with:

- 1) 300 MeV < E < 800 MeV
- 2) $45^{\circ} < \theta_{1,2} < 135^{\circ}$
- 3) $\zeta = |\theta_1 + \theta_2 180^\circ| < 10^\circ$
- 4) $\cos \alpha > -0.975$

VLAB selection (after LAB): using DC to clean the sample

- 2 tracks with:
- 1) $\rho < 7.5$ cm, |z| < 15 cm
- 2) p > 400 MeV
- 3) opposite curvature

and the EMC cuts are tightened:

- 4) $55^{\circ} < \theta_{1,2} < 125^{\circ}$
- 5) $\zeta < 9^{\circ}$

The effective cross section: comparisons

The effective cross section: comparisons

1) only comparing pure QED corrections (φ exchange and vacuum polarization are switched off) from "stand alone" evaluations:

BHAGENF BABAYAGA BHWIDE MCGPJ

$$\begin{array}{c} (460.8 \pm 0.1_{\text{stat}}) \text{ nb} \\ (459.4 \pm 0.1_{\text{stat}}) \text{ nb} \\ (456.2 \pm 0.1_{\text{stat}}) \text{ nb} \\ (455.3 \pm 0.1_{\text{stat}}) \text{ nb} \end{array} \xrightarrow{\bullet} 0.3 \% \\ \bullet 0.7 \% \\ \bullet 0.1 \% \end{array}$$

2) the correct running of $\alpha_{em}(s)$ is completely equivalent to the explicit ϕ exchange diagram:

 σ (wrong $\Delta \alpha_{had}(s)$ with ϕ) = 471.97 ± 0.11 nb σ (correct $\Delta \alpha_{had}(s)$ no ϕ) = 471.63 ± 0.11 nb

Momentum and ζ comparisons

 the agreement near p ~ 400 MeV is very good, a difference at large p tail is negligible perfect agreement in the acollinearity distributions

Polar angle studies

Clustering efficiency: the problem

definition of the control sample:

- 1) 1 vtx in $|\underline{\mathbf{r}}| < 5$ cm with exactly 2 tracks
- 2) $\rho_{LH} > 180 \text{ cm for both}$
- 3) 1017.5 MeV < M_{e+e-} < 1021.5 MeV
- 4) $m_{trk} < 90 \text{ MeV}$

among these events we look for 2 clusters with:

- 1) $|\rho_{LH} \rho_{clu}| < 40$ cm for both
- 2) $|t_{clu1} t_{clu2}| < 4 \text{ ns}$
- 3) $E_{clu} > 300$ MeV for both

$$\varepsilon_{\text{clust}}^{\text{data}} = (99.58 \pm 0.11)\%$$

 $\varepsilon_{\text{clust}}^{\text{MC}} = (99.866 \pm 0.015)\%$

a difference of 0.3% btw data and MC

A possible explanation

a failure in the clustering procedure, due to wrong time information: a parent Bhabha cluster is splitted in ≥ 2 fragments, none surviving the cut at 300 MeV

run number	VLAB events	rejected events
19400	22494	38
20477	26601	43
21849	46073	56
21851	43582	42
22222	51352	66
23100	48489	94

the effect is stable in time: a correction of 0.15%, leads to a relative difference data-MC of 0.1%

e.g. take 3 rejected events because only 1 cluster has Ecl > 300 MeV

Background estimate (I)

Background estimate (II)

a second method consists in using the particle discriminator e/π , requiring that at least one track to be identified as a pion in the range $m_{trk} > 100$ MeV

$$\frac{N_{bkg}}{N_{TOT}} = (0.623 \pm 0.015)\%$$

a weighted average of background content of 0.55% and a systematic error of 0.10% are estimated

in rejecting cosmic events, only 1/5 of events with E > 30 MeV in the outer plane of the calorimeter are acquired (2001 conditions), after filtering a run with SELCOS and running the VLAB selection, a fraction of events survives

this fraction is really stable in different runs: ~ 0.1%

the correction to be applied because of VLAB events lost at the trigger level is 4*0.1%

run number	VLAB events	lost events
19400	22494	100
20477	26601	104
21849	46073	208
22222	51352	212
23000	45483	160

Dependence on sqrt(s) run by run

1020.4 (Normalized for the second sec 1019.2 1019 1018.8 1018.6 19500 20000 21500 22000 22500 20500 21000 23000 23500 run number Δσ/σ -4.228**P**1 0.006 P2 0.2497E+06 0.004 0.002 0 -0.002-0.004 -0.006 1.021 1.0215 1.0175 1.018 1.0195 1.02 1.0205 1.0185 1.019 sqrt(s) (GeV)

since the cross section is evaluated at the nominal value of $s^{1/2} = 1019.5$ MeV some checks are performed to see how much L changes according to the measured $s^{1/2} = M_{e+e-}$

 $\Delta L/L = -\Delta \sigma/\sigma$

is parameterized as a function of $s^{1/2}$, from Monte Carlo:

$$\frac{\Delta\sigma}{\sigma} = -4.228 \cdot (x - 1.0195) + 2.497 \times 10^5 \cdot (x - 1.0195)^3$$

List of corrections and systematics

	correction $(\%)$	systematic error $(\%)$
acceptance	+0.18	0.2
tracking	_	< 0.1
clustering	+0.15	0.1
background	-0.55	0.1
cosmic veto	+0.41	< 0.1
dependence on \sqrt{s}	+0.1	0.1

 $L = (141.0 \pm 0.8) \text{ pb}^{-1}$

Energy calibration studies

in looking at the 1st plot I thought about a correction to compensate the mismatch at high E_{clu} values, but then there comes the 2nd plot..., something to refine in a run by run approach

Conclusions and outlook

 \succ in the measurement of the luminosity, the major source of uncertainty is from theory

> the Pavia theory group has worked at an improved version of Babayaga

> EURIDICE is a great opprtunity in triggering theorists to improve their calculations

to do (short term):

- release a paper (a KLOE Note) with the details of the measurement
- understand BHWIDE and Novosibirsk generators (not that trivial)

to do (long term):

- analysis of the 2002 runs
- measurement of L with $\gamma\gamma$, theorists claim 1% precision, but if we show them how clever are our measurements, we can motivate them to do better...