Status of $f_0(980) \rightarrow \pi^+\pi^-$ analysis

- Study of background sources ($\mu^+\mu^-\gamma$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-$) ρ^0 line shape and $\rho^0-\omega$ interference
- Three different fits to the same spectrum
- Charge asymmetry

1.Study of background sources $\mu^+\mu^-\gamma$: new generation based on *phokhara3* Trackmass: comparison data-MC

239 pb-1 MC sample \rightarrow 360 evts surviving \rightarrow 526 evts in the full sample (6.8 x 10⁵ data sample)

 $M(\mu\mu)$ in $\pi\pi$ hypothesys

This curve is added to the fit function

$\pi^+\pi^-\pi^0$ higher statistics new generation \rightarrow new function to add in the fit

 $\pi^+\pi^-$ new two-body generator done \Rightarrow see possible tail on the high mass region

Present estimated backgrounds:

2. ρ^0 line shape and $\rho^0-\omega$ interference ρ^0 mass and width (773.3 and 144.1 MeV) "not consistent" with $\pi^+\pi^-\pi^0$ analysis (775.9±0.7 and 147.3±1.6 MeV). Try to force

Are we sensitive to $M(\omega)$ and $\Gamma(\omega)$? Or do they Affect $M(\rho^0)$ and $\Gamma(\rho^0)$ determination ?

3. Three different fits to the same spectrum:

- KL = Kaon-loop approach (N.N.Achasov et al)
- IM = "no structure" (G.Isidori, L.Maiani)
- BP = based on scattering amplitudes
 (M.E.Boglione, M.Pennington)

$$A(\phi \to S\gamma \to \pi^+ \pi^- \gamma) = -\frac{esm_{\phi}^2}{4f_{\phi}D_{\phi}(s)(s-m^2)} \{M\}$$

$$\begin{split} M_{KL} &= \frac{g_{f\pi\pi} g(m^2) e^{i\delta_m(\theta)}}{D_f(m^2)} \\ M_{IM} &= (s - m^2) \bigg[\frac{g_{f\pi\pi} g_{\phi f\gamma}}{D_f(m^2)} + \frac{c_0}{m_{\phi}^2} + c_1 \frac{m^2 - m_f^2}{m_{\phi}^4} \bigg] e^{i\lambda} \\ M_{BP} &= (m^2 - m_o^2) \big[(a_1 + b_1 m^2) T(\pi\pi \to \pi\pi) + (a_2 + b_2 m^2) T(KK \to \pi\pi) \big] e^{i\lambda} \end{split}$$

The fitting function:

$$\frac{d\sigma}{dm} = \left(\frac{d\sigma}{dm}\right)_{ISR} + \left(\frac{d\sigma}{dm}\right)_{FSR} + \left(\frac{d\sigma}{dm}\right)_{\rho\pi} + back(\pi^{+}\pi^{-}\pi^{0} + \mu^{+}\mu^{-}\gamma) + \left(\frac{d\sigma}{dm}(|A|^{2})\right)_{Scalar} + \left(\frac{d\sigma}{dm}(A)\right)_{int.Scalar+FSR}$$

Free parameters: (1) for the "background" $M(\rho^0) \Gamma(\rho^0) \alpha \beta$ $a_{\rho\pi}$ (2) for the "signal" KL ($m_f g_{fKK} R$) IM ($m_f \Gamma_f gg c_0 c_1 fase$) BP ($a_1 b_1 a_2 b_2 s_0 fase$)

Summary of fit results

	KL		IM		BP	
χ^2/dof (all)	541 / 481		540 / 478		521 / 478	
χ^2/dof (f0)	131 / 100		139 / 100		119 / 100	
	m _f (MeV)	983.7±0.6	m _f (MeV)	984.6±0.5	a 1	-2.57
	g ² _{fKK} /4π (GeV ²)	3.4±0.6	$\Gamma_{\rm f}$ (MeV)	21.3±1.1	b ₁	2.56
	R	2.82±0.08	aa	1.58±0.05	a ₂	3.73
			C ₀	7.8±0.3	b ₂	-4.13
			c ₁	8.0±0.2	$s_0(GeV^2)$	0.21
			fase	0.80±0.32	fase	1.16
$M(\rho^0)$ (MeV)	773.3 ± 0.2		773.7 ± 0.3		772.3 ± 0.1	
$\Gamma(\rho^0)$ (MeV)	144.1 ± 0.3		145.0 ± 0.5		139.9 ± 0.1	
α (×10 ⁻³)	1.68 ± 0.05		1.70 ± 0.05		1.78 ± 0.03	
β (×10 ⁻³)	-122 ± 2		-126 ± 2		-154 ± 1	
a _{ρπ}	compatibile con 0 e con 1 (atteso)					
BR (×10 ⁻⁵)	21.4		6.9		22.1	

 $\Gamma_{\rm f}(\rm KL)$ ~ 70 MeV , $\Gamma_{\rm f}(\rm IM)$ ~ 21 MeV

KL vs IM (2): different "rise" of the signal: it is due to the different propagator

KL vs IM (3):
couplings:
KL:

$$g_{fKK}^2/4\pi = 3.4 \text{ GeV}^2$$
 \Rightarrow $g_{fKK} = 6.4 \text{ GeV}$
 $g_{f\pi\pi}^2/4\pi = 1.2 \text{ GeV}^2$ \Rightarrow $g_{f\pi\pi} = 3.9 \text{ GeV}$
IM:
 $\Gamma_f = 21 \text{ MeV}$ \Rightarrow $g_{f\pi\pi} = 1.0 \text{ GeV}(*)$
 $g_{\phi f\gamma}g_{f\pi\pi} = 1.6$ \Rightarrow $g_{\phi f\gamma} = 1.6 \text{ GeV}^{-1}$

(*) assuming f \rightarrow $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ the only contribution to Γ

$$\Gamma(f_0 \to \pi^+ \pi^-) = \frac{g_{f\pi\pi}^2 p_{12}(m_f)}{8\pi m_f^2}$$

Effect of the c_0 and c_1 "background": solid: $c_0 = 0$, $c_1 = 0$ dashed: c_0 and c_1 fitted

IM :

Size of the "scalar" signal respect to ISR: peak at f0 mass (size ~ 30%) rise at low masses

Any low mass analysis requires knowledge of the scalar contributions

4. Charge asymmetry: in hep-ph/0412239 first attempts to predict the $M(\pi\pi)$ behaviour.

Conclusions

- Some more checks on possible backgrounds ($\pi^+\pi^-\pi^0$ and $\pi^+\pi^-$) are needed
- The fit is OK (improve is possible for BP)
- The charge asymmetry is an interesting issue
- A message for hadronic cross-section measurement: take care of scalars even in the low mass region.
- Define a strategy for publications.