Measurement of $\Gamma(\phi \rightarrow l^+l^-)$ from $e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$ processes

> M. Antonelli M. Dreucci

Cross section

$$A = A_{s/t} + A_{\Phi}$$

$$\sigma = \sigma_{s/t} + \sigma_{\Phi} + \sigma_{int}$$

The interference term σ_{int}

$$\begin{split} \sigma_{\text{int}} &= \frac{3\alpha\Gamma_{ll}}{M_{\Phi}} \frac{s - M_{\Phi}^{2}}{(s - M_{\Phi}^{2})^{2} + s\Gamma_{\Phi}^{2}} \int_{\cos\theta_{1}}^{\cos\theta_{2}} f_{ll}(\theta) d\cos\theta \\ & \text{Bhabha} & \text{muons} \\ f_{ee}(\theta) &= 2(1 + \cos^{2}\theta - \frac{(1 + \cos\theta)^{2}}{1 - \cos\theta}) \\ \Gamma_{ll} &= \Gamma_{ee} & \Gamma_{ll} = \sqrt{\Gamma_{ee}\Gamma_{\mu\mu}} \end{split}$$

• W below and above M_{Φ} affects in opposite way σ_{int} . This difference is linear in Γ_{LL} . For this reason our analysis uses only 3 energy points

- For muons we fit directly cross section
- For Bhabha, in order to increase sensitivity, we fit the forward-backward asymmetry $A_{\rm FB}$

Experimental advantages

- Γ_{LL} in first approximation depends only on absolute difference in A_{FB} (bhabha) and $\sigma_{\mu\mu}$ (muons)
- In addition we have some experimental advantages in both cases :

Bhabha

muons

- Luminosity not nedeed
- Partial cancellation in eff, bkg

- fully energy-correlated systematics needed only to evaluate $\sigma_{\mu\mu}$ - These systematics cancel out in $\Gamma_{\mu\mu}$ evaluation

Bhabha

 $\delta \Gamma_{ee} / \Gamma_{ee} \sim 0.03$ translates in $\delta A_{FB} / A_{FB} \sim 0.0003$ $\delta \Gamma_{\mu\mu} / \Gamma_{\mu\mu} \sim 0.03$ translates

in $\delta\sigma/\sigma \sim 0.004$

Muons

Sensitivity

Selection

W'/W reconstruction

We use a lower cut on W'/W. If we boost back in ϕ rest frame, assuming a single beam collinear ISR photon and collinear FSR, then :

$$\frac{W'}{W} = \frac{\sin\theta_1 + \sin\theta_2 - \left|\sin(\theta_1 + \theta_2)\right|}{\sin\theta_1 + \sin\theta_2 + \left|\sin(\theta_1 + \theta_2)\right|}$$

θ_{eff} reconstruction

To define our geometrical acceptance we define the polar angle in the effective c.o.m., $\theta_{\rm eff}$, by using ISR photon mementum (average angle)

Data sample

- 3 energy points of 2002 scan
- BHABHA stream : basically only ee->ee events
- CLB stream : $ee \rightarrow \mu\mu$ and $ee \rightarrow \pi\pi$ events

Energy, MeV	Luminosity, nb ⁻¹
$1017.17 \pm 0.01_{stat} \pm 0.03_{syst}$	6966 ± 4 _{stat} ± 42 _{syst}
1019.72 ± 0.02 _{stat} ± 0.03 _{syst}	4533 ± 3 _{stat} ± 27 _{syst}
1022.17 ± 0.01 _{stat} ± 0.03 _{syst}	5912 ± 3 _{stat} ± 35 _{syst}

$e^+e^- \rightarrow e^+e^-$ analysys

ACCEPTANCE

 $(W'/W)_{REC} = 0.95$ 53 < θ_{eff} < 127

Monte Carlo

Monte Carlo

Systematics

Uncorr. syst. dominated by acceptance cuts

efficiency , bkg uncertainties

method: cuts variation

δA_{FB}	$1017.17~{\rm MeV}$	$1019.72~{\rm MeV}$	$1022.17~{\rm MeV}$
$(W'/W)_{rec}$ cut $(0.90 - 0.98)$	0.00008	0.00003	0.00011
$\theta_{\rm eff} {\rm cut} \left(50^\circ - 70^\circ\right)$	0.00010	0.00010	0.00010
Total	0.00013	0.00010	0.00015

Table 2: Summary of uncorrelated systematic uncertainties on A_{FB}

The correl. syst. amount to about ~ 0.2% (θ_{eff} res., FSR)

Experimental data

W, MeV	Forw-Back Asymmetry A _{FB}
1017.17	0.6275 ± 0.0003 _{stat} ±0.0001 _{un.syst}
1019.72	0.6205 ± 0.0003 _{stat} ±0.0001 _{un.syst}
1022.17	0.6161 ± 0.0003 _{stat} ±0.0002 _{un.syst}

The correl. syst. amount to about ~ 0.2% (θ_{eff} res., FSR)

Fit function to data

- We use a B.W. cross section, corrected for ISR, FSR and BES.
- The fit parameters are : Γ_{LL} , M_{Φ} and $A_{FB}(M_{\Phi})$

Fit result

 M_{ϕ} = 1019.50 ±0.08 MeV

Systematics

- W'/W cut
- θ_{eff} cut
- $\delta\Gamma_{\Phi}$
- ω exhange
- π and μ cont. ~ 0 Tot \rightarrow 0.03
 - 0.03 keV

~ 1.9.10⁻² keV

~ 2.0.10⁻² keV

~ 1.3.10⁻² keV

~ 10⁻³ keV

result : 1.32 ± 0.05 ± 0.03

 $A_{FB}(M_{\Phi})$ = 0.6212 ± 0.0002 ± 0.001 $A_{FB}(M_{\Phi})_{th}$ = 0.6214 ± 0.001(FSR)

$\mu^+\mu^- \rightarrow \mu^+\mu^-$ analysys

ACCEPTANCE

 $(W'/W)_{REC} = .985$ 50 < θ_{eff} < 130

Streaming data

Monte Carlo

• We have tested a MC in which radiative corrections in the 1° order are taken into account exactly and leading logarithmic contributions are computed in all orders using the structure-function method (<u>A.B. Arbuzov et al., hep-ph/9702262</u>)

Monte Carlo

counting

- Muons and pions counting comes from a fit to the invariant mass distribution.
- To fit signal (ee $\rightarrow \mu\mu$) and background (ee $\rightarrow \pi\pi$) we use a MC with ISR and FSR generator convoluted with M_{inv} resolution (from data) and BES.

$\sigma_{\mu\mu}$ systematics

Uncorr. syst. dominated by acceptance cuts

efficiency , bkg uncertainties

0.01 nb (W'/W), 0.002 nb(θ), 0.0045nb(counting)

* Fully energy-correlated \rightarrow don't affect $\Gamma_{\mu\mu}$ measurement

Trigger *	3.10-3
Filfo *	3.10-3
CLB stream *	6·10 ⁻³
Tracking *	5·10 ⁻³
E _{ECAL} cut *	5·10 ⁻³
Tot →	10-2

Relative err.

cross section

W, MeV	$\sigma_{\mu\mu}$, nb
1017.17	35.66 ± 0.08 _{stat} ± 0.02 _{syst}
1019.72	$40.19 \pm 0.14_{stat} \pm 0.02_{syst}$
1022.17	$43.92 \pm 0.09_{stat} \pm 0.02_{syst}$

Fit function to data

• We use a B.W. cross section, corrected for ISR, FSR and BES.

• The fit parameters are : $\Gamma_{\mu\mu}$, M_{Φ} and σ° .

Fit result

Systematics

- W'/W cut
- $-\theta_{eff}$ cut
- $-\delta\Gamma_{\Phi}$
- $-\omega$ exhange
- counting
 - Tot \rightarrow
 - Result:
 - $\sigma^{\circ}(M_{\oplus})=39.20 \pm 0.04 \pm 0.4$ σ°(M_m)_{th}=39.2

- ~ 0.9.10⁻² keV
- ~ 0.2.10⁻² keV
- ~ 1.0.10⁻² keV
- 10⁻³ keV
- ~ 0.4.10⁻² keV
 - 0.017
- $1.320 \pm 0.018 \pm 0.017$

Conclusion

Γ_{LL} = 1.320 ± 0.017 ± 0.015

CMD-2 (1999) $1.32 \pm 0.02 \pm 0.04$ (indirect)

More details on KLOE memo 289