Update on h ® p+p⁻p⁰

- Recall to previous talk
- Results on MC rad04
- Results on all data
- Results on Asymmetry parameters
- Conclusions

We expand the decay amplitude about the center of the Dalitz plot as:

 $|A(X,Y)|^2 = 1 + aY + bY^2 + cX + dX^2 + eXY$ Where:

$$X = \sqrt{3} \frac{T_{+} - T_{-}}{Q_{h}} \qquad X \in [-1;1]$$
$$Y = \frac{3T_{0}}{Q_{h}} - 1 \qquad Y \in [-1;0.895[$$

$$Q_{h} = m_{h} - 2m_{p^{+}} - m_{p^{0}}$$

But to improve the resolution we put as Y-variable

$$Y_{M} = (Y_{ch} + Y_{0}) / 2$$

Results on MC - rad04

On MC_old sample of events: "Core" resX = 0.016 a.u. "Core" resY_M = 0.026 a.u.

On sample of 2763000 MC_rad04 events

Tests of the fit procedure on MC

 $Ndf = N^{eff}_{bin}$ -

Analysis on Data

The analysis has been applied on all KLOE statistic corresponding to:

$N(h \otimes p^{+}p^{-}p^{0}) = 1,213,568$

events in the Dalitz plot

Background evaluation

Procedure of fit

Until now the fit is done using:

 $|A(X,Y)|^2 = 1 + aY + bY^2 + cX + dX^2 + eXY$

We found "low" Pc^2 .

We decide to fit using:

 $|A(X,Y)|^2 = 1 + aY + bY^2 + fY^3 + cX + dX^2 + eXY$

We found an improvement of Pc^{2} .

Tests of the fit procedure on Data

Results on Data

łf	Ρ _{χ2} %	۵	b	с	d	e	f
9	29	-1.084 ± 0.008 -0.013/0	0.120 ± 0.009 0/0.014	0.001 ±0.004 0/0.001	0.053 ±0.008 -0.009/0.006	-0.007 ±0.010 0/0.01	0.13 ±0.0 0/0.03
0	32	-1.084 ± 0.008 -0.013/0	0.120 ± 0.009 0/0.005	0.0001 ±0.0030 0/0.003	0.054 ±0.009 -0.009/0.006	1⁄4	0.13 ±0.0 0/0.03
1	35	-1.084 ± 0.008 -0.013/0	0.120 ± 0.009 0/0.005		0.054 ±0.008 -0.009/0.006	1⁄4	0.13 ±0.0 0/0.03
2	0	-1.062 ± 0.007 -0.013/0	0.100± 0.008 0/0.009				0.11± 0.0 0/0.03
2	0	-1.043 ± 0.005 -0.04/0	0.140 ± 0.009 -0.02/0.01		0.046 ±0.008 -0.003/0.008		

$$A = (-0.03 \pm 0.09) \cdot 10^{-2}$$

 A_{PDG} = (-0.09 ± 0.17) • 10⁻²

We applied the analysis on new official MC production, RADO4. We found good results: we reproduce the input parameters and the Data-MC comparison is satisfactory.
We analyzed "all" Kloe data; the analysis signals clear sensitivity to quadratic slope in x and apparently signals even sensitivity to the <u>cubic</u> slope in y (never measured before).

- We measure left-right, quadrant and sextant asymmetries better than PDG
- KLOE MEMO in preparation.