Towards a fit to the $\pi^0 \pi^0 \gamma$ **Dalitz plot...**

S. Giovannella, S.Miscetti

- ✓ Background (ϕ ® $\eta\gamma$ ® $\pi^0\pi^0\pi^0\gamma$) check
- ✓ E_{ana} , E_{pair} vs $M_{ππ}$, $M_{πγ}$
- ✓ Study of theoretical functions
- ✓ First try on $M_{\pi\pi}$

Check of the $\phi \otimes \eta \gamma \otimes \pi^0 \pi^0 \pi^0 \gamma$ **background**

Since we discovered a wrong normalization of the $\eta\gamma$ background in our previous analysis, some control histograms have been produced

Analysis efficiencies vs $\mathbf{M}_{\pi\pi}$

New RAD04 MC production used (2001 only) ε_{pair} includes both pairing and clustering problems Red is $\phi \rightarrow f_0 \gamma + e^+ e^- \rightarrow \omega \pi^0$, with the relative MC proportions

Analysis efficiecies vs $\mathbf{M}_{\pi \gamma}$

New RAD04 MC production used (2001 only) ε_{pair} includes both pairing and clustering problems Red is $\phi \rightarrow f_0 \gamma + e^+ e^- \rightarrow \omega \pi^0$, with the relative MC proportions

Smearing Matrix

New RAD04 MC production used (2001 only) Smearing includes both pairing and clustering problems Both $\phi \rightarrow f_0 \gamma + e^+ e^- \rightarrow \omega \pi^0$, with the relative MC proportions

Theoretical functions $@ \sqrt{s} = 1919.6 \text{ MeV}$

Dalitz plot [$d^2\sigma_{\pi\pi\gamma}/dM_{\pi\pi}dM_{\pi\gamma}$)] parametrization from N. Achasov Free parameters: M_{f0} , g_{fKK} , $g_{f\pi\pi}$, ϕ_{SV} (S γ -VDM rel. phase), $\delta_{b\rho}$ ($\rho\pi - \omega\pi$ rel. phase) Some complex $\omega\pi$, $\rho\pi$ coupling constants fixed to SND values (~ 20% error on amplitude, phases not reliably determined)

Theoretical functions varying \sqrt{s}

Dependence on √s built in on the x – sec
Distributions normalized to the peak

 $---\sqrt{s} = 1017.0 \text{ MeV}$

 $-\sqrt{s} = 1019.6 \text{ MeV}$

 $--- \sqrt{s} = 1022.0 \text{ MeV}$

 f_0 parameters fixed to KLOE 2000 data

Theoretical functions varying \sqrt{s}

- ➢ Dependence on √s built in on the x−sec
 ➢ Distributions normalized to the peak
- --- $\sqrt{s} = 1017.0 \text{ MeV}$ --- $\sqrt{s} = 1019.6 \text{ MeV}$ --- $\sqrt{s} = 1022.0 \text{ MeV}$

f_o parameters fixed to KLOE 2000 data

Theoretical functions varying \sqrt{s}

➢ Dependence on √s built in on the x−sec
➢ Distributions normalized to the peak

Comparison with old analysis spectrum

First try of the fit-machinery (always fitting M_{pp})

- Only ANA1 tried
- As expected, a factor x2 correction on ε_{pair} needed
- Fit requires a -20% on $\rho\pi \omega\pi$ constants
- Very slow computation
- Bad control on first $M_{\pi\pi}$ bins
- We will test also $M_{\pi\gamma}$ agreement with the fit parameters and dependence of the x-sec *vs* sqrt(s)
- Once convinced that we do not have errors we will try 2D-fit

First try of the fit-machinery

Using parameters found at peak

