

A. De Santis S. Giovannella L. Ingrosso S. Miscetti

- sudying the interference pattern vs \sqrt{s} we can measure BR($\phi \rightarrow \omega \pi^0$)
- hese events are a relevant background in other analisys such as quantum
- interferometry KsKl in this final state.
- une the simulation of this process in Geanfi
- ading amplitude for this process

Looking at Geanfi code ... we believe that it works as follow Two cascade decay imposing $\sqrt{s} + BW$ of $\omega + ISR$ radiator Two body decay $\omega - \pi^0$ according to $\cos(\theta) = 1 + x^2$ Three body decay of $\omega (\pi^+ \pi^- \pi^0)$: pure phase space

Check MC: what we have in GEANFI

we do not expect such a behaviour for three body decay generated only with uniform phase space ... investigating

Check MC 2

order to correct MC Dalitz we apply a reshaping procedure which we weight the dalitz population with:

$$W = | \overrightarrow{P}_{\pi+} \times \overrightarrow{P}_{\pi-} |^2$$

Analysis strategy: Selection criteria

wo steps:

Acceptance region

One vertex at IP
 Two tracks connected at vertex
 Four neutral cluster with: {

 E_{clu} grater than 10 MeV
 ToF compatible with prompt γ
 |cos(0)|<0.93

Global Kinematic Fit

 Improve resolutions and improve rejection of background events

Analysis strategy: final cuts

Three different cuts:

- c^2 cut [LT 50] (c^2 from kinematic fit)
- Bhabha filtering (cut in $cos(\theta_+)$ vs E_{π^+} plane)

φ Decay WG – I NF – 30 Aprile 2004

A nice plot for a better view of "bhabha filter"

- Ve use MC shape for signal and <u>backgroud</u> to fit data distributions. After a 100 KeV sampling in \sqrt{S} of all relevant variable, we have chosen to fit ω mass distributions.
- Ve fit data as linear combinations of MC signal and background evaluation of the second evaluati
- Fit procedure take into account also statistical fluctuations of MC.

$$d_{i} = f_{s} s_{i} \left(D_{T} / S_{MC} \right) + \sum_{j} f_{b}^{j} \cdot b_{i}^{j} \left(D_{T} / B_{MC}^{j} \right)$$

where d_i , s_i , b_i are respectively data, signal and background, and f_k are normalized fractions of signal and background in data (fit result) and D_T , S_{MC} and B_{MC} are integrals af these distributions,

$$d_i = w^s s_i + w^b b_i$$
 where $w^k = f_k (D_T / S_{MC}^k)$

Data – MC Comparison (all cuts applied)

. De Santis

h Decay WG – I NF – 30 Aprile 2004

Data vs Mc: all other variables

. De Santis

φ Decay WG – I NF – 30 Aprile 2004

Angular distribution

h Decay WG – I NF – 30 Aprile 2004

Outer selection

. De Santis

φ Decay WG – I NF – 30 Aprile 2004

Outer selection 2

Efficiency

Efficiency for signal evaluated by MC only. We believe that acceptance can have still some problem due to the not final shape of the generator. $\varepsilon^{ANA} = 0.67799 \pm 0.00034$

- $\epsilon^{\text{ECL}} = 0.99963 \pm 0.00005$ $\epsilon^{\text{CosmicVeto}} = 0.9959 \pm 0.0001$
- Trk/vertex to be evaluated
- ECL from 2003MC productions
- Cosmic from Run# 17845-22293 $.5_{1015}$ 1015_{1015} 1018_{1019} 1020_{1021} 1022_{1023} 1022_{1023} without T3 filter

Cross sections

. De Santis

φ Decay WG – LNF – 30 Aprile 2004

Our preliminary results are: $\sigma = 4.19 \pm 0.13$ $Re(Z) = 0.093 \pm 0.012$ $Im(Z) = -0.061 \pm 0.013$ $BR(\phi -> \omega \pi^0) = (1.228 \pm 0.070) \cdot$

or comparison:

 $5 = 8.2 \pm 0.2$

 $\text{Re}(\text{Z}) = 0.104 \pm 0.028$

 $m(Z) = -0.118 \pm 0.030$

These results come from VEPP group)

 $BR(\phi - > \omega \pi^0) = (4.8 \pm 0.8) \cdot 10^{-5}$

• Si potrebbero mostrare insieme le due curve... forse

Toy MC (no radiator) vs-GEANFI

To be tested the effect of $\sin^2(\theta)$ espect to the normal of the ecay plane provided by $\pi^+\pi^-$... ifficult since this should be one in the omega rest-frame ...

Shabha filter effect

