$\eta \rightarrow \pi^{0} \gamma \gamma$ analysis improvements

Biagio Di Micco

Università degli Studi di Roma Tre
I.N.F.N. sezione di Roma Tre
$\widetilde{\text { OpenOffice.org }}$

Improvements

- cuts optimization
- new kinematic fit procedure
- $\eta \rightarrow 3 \pi^{0}$ with 2 lost photons study

cuts optimization

The cuts have been optimized searching for the maximum value of: $\frac{S}{\sqrt{B}}$

Old cuts:

$$
\begin{gathered}
\mathrm{E}_{\min }>30 \mathrm{MeV} \\
\theta_{\gamma \min }>20^{\circ} \\
x_{\pi_{\min }^{0}}^{2}<30 \\
\mathrm{X}_{\pi^{0} \pi^{0}}^{2}>20 \\
\mathrm{X}_{\omega \pi^{\circ}}^{2}>60 \\
\mathrm{X}_{n \pi_{0}}^{2}>10 \\
\mathrm{~S} / \mathrm{B}=15 \% \\
\mathrm{~S} / \sqrt{\mathrm{B}}=6.26
\end{gathered}
$$

Optimized cuts:

$$
\begin{gathered}
\mathrm{E}_{\min }>35 \mathrm{MeV} \\
\theta_{\gamma \min }>21^{\circ} \\
X_{\pi_{\min }^{0}}^{2}<15 \\
\mathrm{X}_{\pi^{0} \pi^{\circ}}^{2}>68 \\
\mathrm{X}_{\omega \pi^{0}}^{2}>78 \\
\mathrm{X}_{n \pi_{0}}^{2}>15 \\
\mathrm{~S} / \mathrm{B}=45 \% \\
\mathrm{~S} / \sqrt{\mathrm{B}}=8.26
\end{gathered}
$$

Gauzzi's discriminant analysis required

$\mathrm{E}_{\text {max }}$ distribution (GAMS BR)

before optimization

after optimization

Background composition

DATA-MC comparison

DATA $150 \mathrm{pb}^{-1}$ MC $\quad 75 \mathrm{pb}^{-1}$

DATA
MC (GAMS VALUE)

OLD CUTS

OPT. CUTS

DATA-MC comparison

DATA-MC comparison

$\begin{array}{lr}\text { DATA } 150 \mathrm{pb}^{-1} \\ \text { MC } & 75 \mathrm{pb}^{-1}\end{array}$

DATA
MC (only background)
OLD CUTS

OPT. CUTS

we could start to evaluate a BR, but we need the large radiative MC production

Trying to reduce the $\eta \rightarrow 3 \pi^{0}$

background studying the angular

distribution of the lost clusters

2 merging $\longrightarrow P$ Gauzzi
3 possibilities
$\left.\begin{array}{c}\text { 1-lost 1-merging } \\ 2 \text { lost }\end{array}\right\} \begin{aligned} & \text { I try to solve } \\ & \text { this problem }\end{aligned}$

Angular distribution of the lost clusters

recovering of the lost clusters

attempt to reconstruct the two lost photons starting from the reconstructed photons in the EMC

new kinematic fit procedure

Procedure based on the iterative kinemtic fit procedure by
A.G. Frodesen, O. Skjeggestad, H. Tøfte Probability and Statistics in Particle Physics - Universitetsforlaget (Bergen, Oslo, Tromsø)
() Possibility to use unknowns in the kinematic fit
(-) Possibility to use correlated variables if you have the full covariance matrix
(2) More slow than the W.Kim fit (a lot of matrix inversions and multipliacations).

How it works

$\mathrm{y}_{\mathrm{j}} \quad$ measured variables
V_{y} covariance matrix
$\eta_{\mathrm{j}} \quad$ Optimized variables $\quad \xi_{\mathrm{i}}$ unknown variables

$$
\begin{array}{rr}
\mathrm{f}_{\mathrm{k}}\left(\xi_{\mathrm{i}}, \eta_{\mathrm{j}}\right)=0 & \text { Constraints equations } \\
\left(\mathrm{F}_{\xi}\right)_{\mathrm{ki}}=\frac{\partial \mathrm{f}_{\mathrm{k}}}{\partial \xi_{\mathrm{i}}} & \left(\mathrm{~F}_{\eta}\right)_{\mathrm{kj}}=\frac{\partial \mathrm{f}_{\mathrm{k}}}{\partial \eta_{\mathrm{j}}} \\
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{f}}^{v}+\mathrm{F}_{\eta}^{v}\left(\overrightarrow{\mathrm{y}}-\vec{\eta}^{v}\right) & \mathrm{S}=\mathrm{F}_{\eta}^{v} \mathrm{~V}\left(\mathrm{~F}_{\eta}^{\mathrm{T}}\right)^{v}
\end{array}
$$

This quantity are evaluated at $v^{\text {th }}$ iteration step

Iterative equations

$$
\begin{aligned}
& \vec{\xi}^{v+1}=\vec{\xi}^{v}-\left(\mathrm{F}_{\xi}^{\mathrm{T}} \mathrm{~S}^{-1} \mathrm{~F}_{\xi}\right)^{-1} \mathrm{~F}_{\xi}^{\mathrm{T}} \mathrm{~S}^{-1} \overrightarrow{\mathrm{r}} \\
& \vec{\lambda}^{v+1}=\mathrm{S}^{-1}\left[\overrightarrow{\mathrm{r}}+\mathrm{F}_{\xi}\left(\vec{\xi}^{v+1}-\vec{\xi}^{v}\right)\right] \\
& \vec{\eta}^{v+1}=\overrightarrow{\mathrm{y}}-\mathrm{VF}_{\eta}^{\mathrm{T}} \vec{\lambda}^{v+1}
\end{aligned}
$$

In this way one evaluates the variables at $(v+1)$ step using those at v step.

The convergence is checked requiring small variation between two consecutive steps of:

$$
\mathrm{X}^{2}(\vec{\eta}, \vec{\xi}, \vec{\lambda})=(\overrightarrow{\mathrm{y}}-\vec{\eta})^{\mathrm{T}} \mathrm{~V}^{-1}(\overrightarrow{\mathrm{y}}-\vec{\eta})+2 \vec{\lambda}^{\mathrm{T}} \overrightarrow{\mathrm{f}}(\vec{\eta}, \vec{\xi})
$$

Starting values

We need to choose some starting values for the unknown and optimized varibles.
In this procedure I choose:

$$
\vec{\eta}^{0}=\overrightarrow{\mathrm{y}}
$$

$\vec{\xi}^{0}$
vector with \mathbf{i} components is evaluated solving \mathbf{i} of the \mathbf{k} equations of the constraints

$$
\mathrm{f}_{\mathrm{k}}\left(\vec{\xi}^{0}, \vec{\eta}^{0}\right)=0
$$

$\eta \rightarrow 3 \pi^{0}$ with 2 lost photons

6 unknowns:
$p_{x} p_{y} p_{z}$ of the 2 photons 32 measured quantiy:
E, x, y, z, t of the 5 clusters
$E, p_{x} p_{y} p_{z}$ of the ϕ x, y, z of the vertex

13 constraints:

$$
\begin{array}{ll}
5 & (\mathrm{t}-\mathrm{r} / \mathrm{c})=0 \\
& \mathrm{~m}(\gamma \gamma)=\mathrm{m}\left(\pi^{0}\right) \\
2 & \mathrm{~m}(\gamma \gamma)=\mathrm{m}\left(\pi^{0}\right) \\
& \mathrm{m}(\gamma \gamma \gamma \gamma)=\mathrm{m}(\eta) \\
& p_{\text {tot }}=p_{\Phi}
\end{array}
$$

These constraints are used to evaluate ξ^{0} variables
$p_{\gamma 1 \mathrm{x}}+\mathrm{p}_{\gamma 2 \mathrm{x}}=\mathrm{p}_{\text {missing }}$
$\left(\mathrm{p}_{\gamma 1 \mathrm{x}}+\mathrm{p}_{\gamma 3}\right)^{2}=\mathrm{m}_{\pi^{0}}^{2} \mathrm{p}_{\gamma 1 \mathrm{x}}^{2}=0$
$\left(\mathrm{p}_{\gamma_{2} \mathrm{x}}+\mathrm{p}_{\gamma^{4}}\right)^{2}=\mathrm{m}_{\pi^{0}}^{2} \mathrm{p}_{\gamma_{2} \mathrm{x}}^{2}=0$
quadratic equations:
2 possible solutions

The solutions multiplicity

$m(\eta)$ doesn't help

$$
\mathbf{m}^{2}(\eta)=\left(\mathbf{p}_{\gamma 1}+\mathbf{p}_{\gamma 2}+\mathbf{p}_{\gamma 3}+\mathbf{p}_{\gamma 1 \mathrm{x}}+\mathbf{p}_{\gamma 2 \mathrm{x}}\right)^{2}
$$

The full kinematic fit doesn't help too.
The χ^{2} of the two kinematic fits is the same.

Solving the equations $1 / 3$

$$
\mathrm{p}_{\phi}=\underbrace{\mathrm{p}_{1}+\mathrm{p}_{2}}_{\pi^{0}}+\underbrace{\mathrm{p}_{3}+\mathrm{x}}_{\pi^{0}}+\underbrace{\mathrm{p}_{4}+\mathrm{y}}_{\pi^{0}}
$$

$\mathrm{x}+\mathrm{y}=\mathrm{p}_{\phi}-\mathrm{p}_{1}-\mathrm{p}_{2}-\mathrm{p}_{3}-\mathrm{p}_{4}=\mathrm{p}_{\text {missing }}$
$\mathrm{x}^{2}=0$
$\left(\mathrm{x}+\mathrm{p}_{3}\right)^{2}=\mathrm{m}_{\pi^{\circ}}^{2}$
$y^{2}=0$
$\left(\mathrm{y}+\mathrm{p}_{4}\right)^{2}=\mathrm{m}_{\pi^{0}}^{2}$

$$
\begin{aligned}
& \mathrm{x}=\mathrm{p}_{\text {missing }}-\mathrm{y} \\
& \left(\mathbf{p}_{\text {missing }}-\mathrm{y}\right)^{2}=\mathbf{0} \\
& \left(\mathbf{p}_{\text {missing }}-\mathrm{y}+\mathbf{p}_{3}\right)^{2}=\mathbf{m}_{\pi^{o}}^{2} \\
& \mathbf{y}^{2}=\mathbf{0} \\
& \left(\mathbf{y}+\mathbf{p}_{4}\right)^{2}=\mathbf{m}_{\pi^{\circ}}^{2}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{p}}_{\text {missing }} \cdot \overrightarrow{\mathrm{y}}=\mathrm{p}_{\text {missing }}^{4} \mathrm{y}^{4}-\frac{\mathrm{p}_{\text {missing }}^{2}}{2}
$$

$$
\overrightarrow{\mathrm{p}}_{3} \cdot \overrightarrow{\mathrm{y}}=\mathrm{p}_{3}^{4} \mathrm{y}^{4}-\overrightarrow{\mathrm{p}}_{\mathrm{missing}} \cdot \overrightarrow{\mathrm{p}}_{3}+\frac{\mathrm{m}_{\pi^{0}}^{2}}{2}
$$

$$
\overrightarrow{\mathrm{p}}_{4} \cdot \overrightarrow{\mathrm{y}}=\mathrm{p}_{4}^{4} \mathrm{y}^{4}-\frac{\mathrm{m}_{\pi^{0}}^{2}}{2}
$$

$$
\mathrm{A}=\left(\begin{array}{c}
\overrightarrow{\mathrm{p}}_{\text {missing }} \\
\overrightarrow{\mathrm{p}}_{3} \\
\overrightarrow{\mathrm{p}}_{4}
\end{array}\right) \quad \overrightarrow{\mathrm{C}}=\left(\begin{array}{c}
\mathrm{p}_{\text {missing }}^{4} \\
\mathrm{p}_{3}^{4} \\
\mathrm{p}_{4}^{4}
\end{array}\right)
$$

$$
\mathrm{y}^{2}=0
$$

$$
\overrightarrow{\mathrm{B}}=\left|\begin{array}{c}
-\frac{\left|\overrightarrow{\mathrm{p}}_{\text {missing }}^{2}\right|}{2} \\
-\overrightarrow{\mathrm{p}}_{\text {missing }} \cdot \overrightarrow{\mathrm{p}}_{3}+\frac{\mathrm{m}_{\pi^{0}}^{2}}{2} \\
-\frac{\mathrm{m}_{\pi^{0}}^{2}}{2}
\end{array}\right|
$$

Solving the equations 2/3

$$
\begin{gathered}
\mathrm{A} \overrightarrow{\mathrm{y}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}} \mathrm{y}^{4} \rightarrow \overrightarrow{\mathrm{y}}=\mathrm{A}^{-1}\left(\overrightarrow{\mathrm{~B}}+\overrightarrow{\mathrm{C}} \mathrm{y}^{4}\right) \\
\mathrm{y}^{2}=0 \rightarrow\left(\mathrm{y}^{4}\right)^{2}-|\overrightarrow{\mathrm{y}}|^{2}=0 \rightarrow \\
\rightarrow\left(1-\left|\mathrm{A}^{-1} \overrightarrow{\mathrm{C}}\right|^{2}\right)\left(\mathrm{y}^{4}\right)^{2}+2\left(\mathrm{~A}^{-1} \overrightarrow{\mathrm{~B}} \cdot \mathrm{~A}^{-1} \overrightarrow{\mathrm{C}}\right) \mathrm{y}^{4}+\left|\mathrm{A}^{-1} \overrightarrow{\mathrm{~B}}\right|^{2}=0 \\
\frac{\Delta}{4}=\left(\mathrm{A}^{-1} \overrightarrow{\mathrm{~B}} \cdot \mathrm{~A}^{-1} \overrightarrow{\mathrm{C}}\right)^{2}-\left(1-\left|\mathrm{A}^{-1} \overrightarrow{\mathrm{C}}\right|^{2}\right)\left|\mathrm{A}^{-1} \overrightarrow{\mathrm{~B}}\right|^{2} \\
\xrightarrow{\text { good discriminating variable }}
\end{gathered}
$$

Angular resolution (only algebric computation)

Angular resolution (after kinematic fit)

Angular resolution: best between the two solutions

photon 1

photon 2

$\Delta / 4$ discriminant power

next steps

- Applying to 1-lost 1-merged events a similar procedure used for the 2- gammas lost ones;
- use the new likelihood in the selection;
- estimating the DATA/MC discrepancy in the merged clusters and correcting for it;
- running on the full statistic 2001/2002 and the new MC radiative production to have acceptable expected distributions;
- trying to evaluate a Br and/or an upper limit;
- evaluating all the systematic effects.

