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Improvements

● cuts optimization

● new kinematic fit procedure

● η →3π0  with 2 lost photons study



cuts optimization

Old cuts:
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Optimized cuts:
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The cuts have been optimized searching for the maximum 

value of:
S

B

Gauzzi's discriminant analysis required
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Background composition
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DATA-MC comparison
DATA 150 pb-1

MC       75 pb-1
DATA 
MC (GAMS VALUE)

OLD CUTS

OPT. CUTS



DATA-MC comparison
DATA 150 pb-1

MC       75 pb-1
DATA 
MC (CB VALUE)

OLD CUTS

OPT. CUTS



DATA-MC comparison
DATA 150 pb-1

MC       75 pb-1
DATA 
MC (only background)

OLD CUTS

OPT. CUTS

we could start to 
evaluate a BR, but we 
need the large radia-
tive MC production 



Trying to reduce the η  →  3 π 0 

background studying the angular 

distribution of the lost clusters

2 merging

3 possibilities   1-lost 1-merging

2 lost } I try to solve 
this problem

P. Gauzzi



Angular distribution of the lost clusters

polar angle 



recovering of the lost clusters

η  →     π 0          π0              π 0

γ γ          γ        γ      γ        γ   
reconstructed

2 lost clusters

attempt to reconstruct the two lost photons starting 
from the reconstructed photons in the EMC



new kinematic fit procedure

  Procedure  based on the iterative 
kinemtic fit  procedure by

A.G. Frodesen, O. Skjeggestad, H. TØfte – 
Probability and Statistics in Particle 
Physics – Universitetsforlaget (Bergen, 
Oslo, TromsØ)

☺ Possibility  to use unknowns in the kinematic fit
☺ Possibility to use correlated variables if you have the full 
covariance matrix
☹   More slow than the W.Kim fit (a lot of matrix inversions 
and multipliacations). 



How it works

 j i

y j measured variables Vy covariance matrix

unknown variablesOptimized variables

f k i , j=0 Constraints equations

Fki=
∂f k

∂i

Fkj=
∂f k

∂ j

r=f F
y− S=F

 V F
T

This quantity are evaluated at νth iteration step



Iterative equations

1=−F
TS−1F

−1F
TS−1r

1=S−1 [rF
1− ]

1=y−VF
T1

In this way one evaluates the variables at (ν+1)  step 
using those at ν step.

The convergence is checked requiring small variation 
between two consecutive steps of:

X2 , ,=y−T V−1y−2 Tf  ,



Starting values

We need to choose some starting values for the 

unknown and optimized varibles. 

In this procedure I choose:

0=y

0 vector with i components is evaluated solving i 
of the k equations of the constraints 

f k 
0 ,0=0



η → 3π0with 2 lost photons

η →  π 0     π 0          π 0

γ γ    γ         γ      γ          γ   

reconstructed

6 unknowns:
p

x
,p

y
,p

z
 of the 2 photons

32 measured quantiy:
E,x,y,z,t of the 5 clusters
E,p

x
,p

y
,p

z  
of the 

x,y,z  of the vertex

13 constraints:
5      (t-r/c)=0
       m(γγ) = m(π0)
2       m(γγ) = m(π0)

   m(γγγγγ) = m(η)
   p

tot
= p



These constraints are used to evaluate 
ξ0 variables

p1 xp2 x= pmissing

p1 xp3
2=m

0

2 p1 x
2 =0

p2 xp4
2=m

0

2 p2 x
2 =0

12    3     1x    4     2x

quadratic 
equations: 
2 possible
solutions 



The solutions multiplicity

m(η) doesn't help

m2=p1p2p3p1 xp2 x
2

p
 missing  

The full kinematic fit doesn't help too.

The χ2 of the two kinematic fits is the same.



Solving the equations 1/3

p=p1p2
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Solving the equations 2/3

A y=BCy4y=A−1  BCy4 

y2=0y42−∣y∣2=0

 1−∣A−1 C∣2y422  A−1 B⋅A−1 C  y4∣A−1 B∣2=0


4
= A−1 B⋅A−1 C 2−1−∣A−1 C∣2∣A−1 B∣2

good discriminating variable



Angular resolution (only algebric 
computation)



Angular resolution (after kinematic fit)



Angular resolution: best between the two 
solutions

photon 1

photon 2



∆/4 discriminant power

η → π0γγ

η → π0π0π0

2γ  lost

η → π0γγ
η → π0π0π0

2γ  lost


4
0



next steps

● Applying to 1-lost 1-merged events a similar 

procedure used for the 2- gammas lost ones;

●  use the new likelihood in the selection;

● estimating the DATA/MC discrepancy in the merged 

clusters and correcting for it;

● running on the full statistic 2001/2002 and the new 

MC radiative production to have acceptable expected 

distributions;

● trying to evaluate a Br and/or an upper limit;  

●  evaluating all the systematic effects.


