

Final results on $e^+e^- \rightarrow \omega \pi^0$ cross section

A. De Santis & S. Giovannella

$\bigcirc \pi^{0} \longrightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$

$\omega\pi \ {}^{0} \rightarrow \pi \ {}^{+}\pi \ {}^{-}\pi \ {}^{0}\pi \ {}^{0}: Dataset$

Integrated luminosity *on-peak* 450 pb⁻¹ Integrated luminosity *off-peak* 150 pb⁻¹

Data:

- drc (DBV-13/14) 01/02
- drc (DBV-24/25) 06

MC sample:

- Signal (DBV-26 LSF=5) 01/02(bgg included)
- mrc (DBV-18 all_phys LSF=0.2) 01/02
- mrc (DVB-26 all_phys LSF=1(2)) 06
- mrc (DVB-26 omegapi LSF=5) 06

28 June 2008

$\omega\pi \ ^{0} \rightarrow \pi \ ^{+}\pi \ ^{-}\pi \ ^{0}\pi \ ^{0}$: Luminosity

In order to use the correct luminosity for the energy outside the ϕ resonance peak we have used directly vlabha entries.

Energy (MeV)	$\sigma(e^+e^- \rightarrow e^+e^-)_{(vla)}(nb)$		
1000	448.40		
1010	439.95		
1020	431.51		
1030	423.06		
From babayaga			

We have sliced dataset in bins of 100 keV width.

In the region around the ϕ *peak* we have used these bins.

For the *off-peak* data we have packed them using the luminosity weighted energy.

$\omega\pi \ {}^{o} \rightarrow \pi \ {}^{+}\pi \ {}^{-}\pi \ {}^{o}\pi \ {}^{o}$: Sample selection

- Only one vertex at Interaction Point (IP)
- Only two tracks connected at vertex
- Four neutral cluster with:
 - E_{clu} grater than 10 MeV
 - ToF compatible with prompt γ (Tw =4 σ_t)

7

vŶ

12 cm

8

cm

$\omega\pi \ ^{o} \rightarrow \pi \ ^{+}\pi \ ^{-}\pi \ ^{o}\pi \ ^{o}$: Background rejection

- $\Delta m_{\pi}/m_{\pi} < 3\sigma$
- bhabha-filter —

Bhabha-filter is applied on both tracks.

 η -filter as been implemented to reject events due to cluster splitting/machine background.

ing Meeting

$\omega\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$: Data/MC tracking efficiency

28 June 2008

Blessing Meeting

$\omega\pi \ {}^{o} \rightarrow \pi \ {}^{+}\pi \ {}^{-}\pi \ {}^{o}\pi \ {}^{o}: ISR Tail$

To correct this effect (~% of the total number of events) we use the ratio of the GEANFI shape and the radiator used in the cross section fit.

Minimal effect on the global efficiency, small effect on the shape when fitting.

The FSR tail has been obtained with PHOTOS

Variation of the acceptance efficiency assumed as systematics to the absolute normalization (0.7% of the total events has one photon over threshold)

$\omega\pi \ ^{0} \rightarrow \pi \ ^{+}\pi \ ^{-}\pi \ ^{0}\pi \ ^{0}$: Data-MC comparison

According to χ^2 value data are divided in two categories: Good and Reject event

Both selection are used in the counting fit to normalize Signal and Backgrounds

$\omega\pi \ {}^{0} \rightarrow \pi \ {}^{+}\pi \ {}^{-}\pi \ {}^{0}\pi \ {}^{0}$: Data-MC comparison

 $\omega\pi \ ^{0} \rightarrow \pi \ ^{+}\pi \ ^{-}\pi \ ^{0}\pi \ ^{0}$: Data-MC comparison

Angular distributions between the two charged and neutral pions

$\omega\pi \ ^{0} \rightarrow \pi \ ^{+}\pi \ ^{-}\pi \ ^{0}\pi \ ^{0}$: Data-MC comparison

Recoil mass for the off-peak data

Resolution and reconstruction effect included as systematics to the absolute normalization.

Clustering effect has been studied varying cut on cluster variables (energy, angle and time)

Theoretical uncertainty for Bhabha event generator also included

		-
Source	$\delta_{\varepsilon}/\varepsilon$	
Clustering	0.6~%	
Cosmic Veto	0.3~%	
Acceptance	0.3~%	
Analysis cuts	0.3~%	
FSR	0.2~%	PHOTOS
Luminosity	0.5~%	
Total	0.96 %	0.75 %

 $\sigma (e^+e^- \rightarrow \omega \pi \ ^o \rightarrow \pi \ ^+\pi \ ^-\pi \ ^o \pi \ ^o E)$

Radiative correction and BES effect

Variation induced	Fit parameters - $P(\chi^2_{fit})=91\%$			Correlation matrix				
by new efficiency (LP07):	$\sigma_0^{4\pi}$ (nb)	8.15	\pm	0.06	-	-36	-81	80
c0 = 8.12(14)	$\Re(Z)$	0.104	±	0.007	-36	-	6	-49
Re(Z) = 0.097(12) Im(Z) = -0.133(9)	$\Im(Z)$	-0.108	\pm	0.004	-81	6	-	-46
σ' = 0.072(8)	$\sigma' ({\rm nb/MeV})$	0.067	±	0.003	80	-49	-46	-

22

Cross section parameters variation as a function of distribution used in the counting fit. All the variation refers to different

"companion" for the reject -event class

28 June 2008

Cross section parameters variation as a function of minimum cluster energy.

28 June 2008

Cross section parameters variation as a function of polar angle interval.

28 June 2008

Cross section parameters variation as a function of clusters time window.

28 June 2008

Blessing Meeting

Cross section parameters variation as a function of kinematic fit χ^2 cut.

28 June 2008

Complete set of variation considered Required minimum probability (10%) Tracking efficiency and vertexing efficiency corrections variation also included.

Fit parameter	S					
$\sigma_0^{4\pi}$ (nb)	8.15	\pm	0.06	\pm	0.05	-
$\Re(Z)$	0.104	\pm	0.007	\pm	0.002	. (
$\Im(Z)$	-0.108	\pm	0.004	\pm	0.003	-(
$\sigma' \ ({\rm nb/MeV})$	0.067	\pm	0.003	\pm	0.001	-(
						: -(
28 June 2008					Blessin	g N

 $\sigma(e^+e^- \rightarrow \omega \pi \ ^o \rightarrow \pi \ ^+\pi \ ^-\pi \ ^o\pi \ ^o E)$

We tried a different parametrization of non resonant part of the cross section

Linear approximation used

$$\sigma_{nr}^{4\pi}(\sqrt{s}) = \sigma_0^{4\pi} + \sigma_{4\pi}'(\sqrt{s} - M_\phi)$$

Alternative parametrization

$$\sigma_{nr}^{4\pi}(E) = \frac{4\pi\alpha^2}{E^3} \left(\frac{g_{\rho\omega\pi}}{f_{\rho}}\right)^2 \left|\frac{m_{\rho}}{D_{\rho}} + A\frac{m_{\rho'}}{D_{\rho'}}\right|^2 P_f(E)$$

 $\sigma(e^+e^- \rightarrow \omega \pi \ ^o \rightarrow \pi \ ^+\pi \ ^-\pi \ ^o\pi \ ^o E)$

To have comparable parameters we use the ratio of the non resonant part at m_{ϕ}

	<i>φ</i> , '	Linear
$\sigma_{_0}$	8.20	8.15(8)
RZ)	0.104	0.104(7)
3Z)	-0.109	-0.108(7)

The slope cannot be compared

Background from $a_1\pi \rightarrow \pi^+\pi^-2\pi^0$ (1)

Background from $a_1\pi \rightarrow \pi^+\pi^-2\pi^0$ (2)

28 June 2008

Blessing Meeting

31

 $Om ^{0} \rightarrow \pi^{0} \pi^{0} \gamma$

$\omega\pi \ ^{o} \rightarrow \pi \ ^{o}\pi \ ^{o}\gamma$

- Sample selection \rightarrow 5 clusters
 - neutral (KLOE TCLO km129)
 - in Time Window ($|T_{\gamma}-R_{\gamma}/c| < \min(5\sigma_{t}, 2 \text{ ns})$)
 - $E_v < 7 \text{ MeV}$
 - $-\cos(\theta_{\gamma}) < 0.92 ~(~23^{\circ})$
 - $E\gamma_1 + E\gamma_2 < 900 \text{ MeV}$
- Photons pairing:
 - 1st kinematic fit (ToF and Energy momentum conservation)
 - parametrization of photon energy resolution (MC)
 - photon pairing into π^0 minimizing a χ^2 defined with the previous resolution
- 2^{nd} kinematic fit (ToF, Energy momentum conservation and π^0 masses)
- $\chi^2(2^{nd})/N_{dof} < 5$ $|\Delta M_{\pi 0}| < 5\sigma_M$

(enlarged with respect to the original analysis $|M_{\pi\nu} - M_{\omega}| < 3\sigma_{M}$)

Background contribution estimated from MC distribution normalized with scale factor calculated using the MC/Data luminosity ratio (tested on different background enriched distribution).

		Dominant Background so		
Background	S/B (no cuts)	S/B (selection)	S/B (bkg rej	
ηπθγ	8.5	8.8	18.9	
$\eta\gamma \rightarrow \pi \partial \partial \partial \gamma$	0.1	0.5	3.9	
$\eta\gamma \rightarrow \gamma \gamma$	0.1	18.8	32.3	

Blessing Meeting

$\omega\pi \ ^{o} \rightarrow \pi \ ^{o}\pi \ ^{o}\gamma$

 $\omega\pi \ {}^{o} \rightarrow \pi \ {}^{o}\pi \ {}^{o}\gamma$

$\omega\pi^{0} \rightarrow \pi^{0}\pi^{0}\gamma$ Data-MC comparison (Step 4)

Data-MC comparison after identification and residual background subtraction. Angular distributions

 $\Delta \phi$ (HRF)

Blessing Meeting

Blessing Meeting

40

$\omega\pi^{0} \rightarrow$	$\pi^{o}\pi^{o}\gamma$	Systemat	tics		
	$\sigma_{_0}(nb)$	RZ)	JZ)	σ' (nb/MeV)	χ^2 / Ndof
Default	0.724(11)	0.011(15)	-0.154(7)	0.0053(5)	13.1/15
χ^2	0.720(11)	0.004(15)	-0.155(7)	0.0054(5)	9.9/15
Μω	0.730(11)	0.005(15)	-0.156(7)	0.0059(5)	8.2/15
Eg	0.727(10)	0.010(15)	-0.155(7)	0.0055(5)	11.0/15
E scale	0.722(10)	0.004(14)	-0.155(7)	0.0054(5)	9.7/15
Bkg	0.724(11)	0.012(14)	-0.157(7)	0.0053(5)	13.9/15
\sqrt{s} scale	0.723(11)	0.022(15)	-0.151(7)	0.0052(5)	12.3/15
ISR tail	0.728(11)	0.010(15)	-0.158(7)	0.0052(5)	12.5/15
Mπ	0.728(10)	0.006(14)	-0.153(7)	0.0053(5)	11.3/15
Interf	0.724(11)	0.019(18)	-0.158(7)	0.0053(6)	13.0/15
	±0.003	±0.006	±0.004	±0.0002	

Blessing Meeting

 \sim

ω's BR

Parameter (e^+	$e^- \to \pi^+ \pi^- \pi^0 \pi^0)$	Parameter	$(e^+e^- \to \pi^0\pi^0\gamma)$				
$\sigma_0^{4\pi}$ (nb)	8.15 ± 0.08	$\sigma_0^{\pi\pi\gamma}$ (nb)	0.724 ± 0.011				
$\Re(Z_{4\pi})$	0.104 ± 0.007	$\Re(Z_{\pi\pi\gamma})$	0.011 ± 0.016				
$\Im(Z_{4\pi})$	$-0.108 \pm 0.0.005$	$\Im(Z_{\pi\pi\gamma})$	-0.154 ± 0.004				
$\sigma'_{4\pi} \ ({\rm nb/MeV})$	0.067 ± 0.003	$\sigma'_{\pi\pi\gamma}$ (nb/M	$(eV) 0.0053 \pm 0.0005$				
$\sigma_0(\omega \to \pi^0 \gamma)$ Phase space correction (1.023)							
$\overline{\sigma_0(\omega \to \pi^+\pi^-)}$	$\frac{1}{\pi^0} = 0.0888 \pm$	= 0.0016					
		$\frac{\Gamma(\omega \to \pi^- \gamma)}{\Gamma(\omega \to \pi^+ \pi^- \pi^0)}$	$= 0.0868 \pm 0.0016$				
$BR(\omega \to \pi^+$	$\pi^{-}\pi^{0}) = (90.49)$	$\pm 0.18)\%$					
$BR(\omega -$	$\rightarrow \pi^0 \gamma) = (7.85)$	$\pm 0.13)\%$	Unitarity imposed $\Delta = 1.66\%$				

ω's BR: combined fit

Parameter $(e^+e^- \rightarrow \omega \pi^0)$						
$\sigma_0^{4\pi}$ (nb)	8.12 ± 0.06					
$\Re(Z_{4\pi})$	0.108 ± 0.007					
$\Im(Z_{4\pi})$	-0.107 ± 0.005					
$\sigma'_{4\pi} \ ({\rm nb}/{\rm MeV})$	0.064 ± 0.003					
$\Re(Z_{\pi\pi\gamma})$	0.006 ± 0.013					
$\Im(Z_{\pi\pi\gamma})$	-0.157 ± 0.006					
Ratio	0.0902 ± 0.0009					
$\sigma_0^{\pi\pi\gamma}$ (nb)	0.732					
$\sigma'_{\pi\pi\gamma} \ (\text{nb/MeV})$	0.0058					

Following referees suggestion we try a simple combined fit Non resonant cross section assumed proportional Errors are from fit (no syst)

Good agreement wrt separated fit

$BR\phi \rightarrow \omega\pi^{0}$)

In the 4π final state only two diagram contribute. Using our results we extract the amplitude for the $-\omega\pi$ ° process

Summary

28 June 2008

Before the MEMO's update

Same number of points (19) but different energies.

For a single publication we plan to have same points (17) and same energy

$\sqrt{s} \; (MeV)$	$N^{4\pi} \pm \delta_N$	$\sigma_{\rm vis}^{4\pi} \pm \delta_{\sigma}$	$N^{\pi\pi\gamma}$	$\sigma_{\rm vis}^{\pi\pi\gamma}$ (nb)
1000.10	228988 ± 569	5.90 ± 0.06	27110 ± 167	0.550 ± 0.005
1009.89	26807 ± 209	6.40 ± 0.08	2958 ± 56	0.581 ± 0.012
1017.05	16590 ± 182	5.85 ± 0.09	-	-
1017.15	-	-	$1020\pm~36$	0.563 ± 0.025
1017.25	-	-	$884\pm~33$	0.566 ± 0.025
1018.09	14963 ± 148	5.82 ± 0.08	-	-
1018.14	-	-	2557 ± 60	0.541 ± 0.014
1018.23	7952 ± 110	5.73 ± 0.10	-	-
1018.81	3083 ± 91	5.50 ± 0.17	-	-
1019.27	4901 ± 99	6.00 ± 0.14	-	-
1019.35	-	-	$322\pm~22$	0.480 ± 0.034
1019.45	59779 ± 332	6.06 ± 0.07	6058 ± 101	0.497 ± 0.009
1019.55	95901 ± 406	6.08 ± 0.07	9516 ± 130	0.487 ± 0.008
1019.65	175936 ± 1278	6.13 ± 0.08	18349 ± 189	0.509 ± 0.007
1019.75	333601 ± 1261	6.17 ± 0.07	34049 ± 282	0.505 ± 0.006
1019.85	261971 ± 1326	6.22 ± 0.07	26124 ± 234	0.508 ± 0.006
1019.95	36796 ± 371	6.37 ± 0.09	$3510\pm~74$	0.491 ± 0.011
1020.05	18449 ± 157	6.38 ± 0.09	1843 ± 52	0.516 ± 0.016
1020.16	8414 ± 110	6.40 ± 0.11	702 ± 32	0.501 ± 0.024
1020.47	9864 ± 127	6.55 ± 0.11	667 ± 31	0.488 ± 0.024
1022.27	17383 ± 149	7.43 ± 0.10	1219 ± 38	0.599 ± 0.021
1022.35	-	-	$515\pm~25$	0.648 ± 0.035
1022.98	30533 ± 201	7.64 ± 0.09	$3101\pm~61$	0.619 ± 0.013
1029.93	34831 ± 213	8.11 ± 0.10	3896 ± 65	0.689 ± 0.013

After the update

WPC:

- 2 point packed in 1

- 1 eliminated

WPN:

- 4 point packed in 2

\sqrt{s} (MeV)	$N^{4\pi} \pm \delta_N$	$\sigma_{\rm vis}^{4\pi} \pm \delta_{\sigma}$	$N^{\pi\pi\gamma}$	$\sigma_{\rm vis}^{\pi\pi\gamma}$ (nb)
1000.10	228988 ± 569	5.90 ± 0.06	27110 ± 167	0.550 ± 0.005
1009.89	26807 ± 209	6.40 ± 0.08	2958 ± 56	0.581 ± 0.012
1017.20	16590 ± 182	5.85 ± 0.09	2108 ± 46	0.564 ± 0.018
1018.14	22915 ± 185	5.79 ± 0.08	2557 ± 60	0.541 ± 0.014
1019.30	4901 ± 99	6.00 ± 0.14	322 ± 22	0.480 ± 0.034
1019.45	59779 ± 332	6.06 ± 0.07	6058 ± 101	0.497 ± 0.009
1019.55	95901 ± 406	6.08 ± 0.07	9516 ± 130	0.487 ± 0.008
1019.65	175936 ± 1278	6.13 ± 0.08	18349 ± 189	0.509 ± 0.007
1019.75	333601 ± 1261	6.17 ± 0.07	34049 ± 282	0.505 ± 0.006
1019.85	261971 ± 1326	6.22 ± 0.07	26124 ± 234	0.508 ± 0.006
1019.95	36796 ± 371	6.37 ± 0.09	3510 ± 74	0.491 ± 0.011
1020.05	18449 ± 157	6.38 ± 0.09	1843 ± 52	0.516 ± 0.016
1020.16	8414 ± 110	6.40 ± 0.11	702 ± 32	0.501 ± 0.024
1020.47	9864 ± 127	6.55 ± 0.11	667 ± 31	0.488 ± 0.024
1022.28	17383 ± 149	7.43 ± 0.10	1891 ± 43	0.612 ± 0.018
1022.98	30533 ± 201	7.64 ± 0.09	3101 ± 61	0.619 ± 0.013
1029.93	34831 ± 213	8.11 ± 0.10	3896 ± 65	0.689 ± 0.013

Conclusions

- Stable results
- Homogeneous dataset
- Memo ready for upgrade (344 and 345)
- Draft almost complete
- $a_1\pi$ background simulation in progress

SPARE

$\omega\pi \ ^{0} \rightarrow \pi \ ^{+}\pi \ ^{-}\pi \ ^{0}\pi \ ^{0}$: Boost effect

Slope correction from boost OLD selection on OMEGAPI official production

In the previous version (OLD) the off-peak simulation was done w/o MB insertion.

Important limitation in GEANFI: when running in user mode (with data card) the crossing angle (ϕ momentum along x) is fixed at 01/02 value. In the real data the p_x is 16 MeV w.r.t. 12 MeV simulated

$\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0)$ OLD-NEW comparison

 $\sigma_{vis} \left[nb \right]$

The positive correlation between slope and constant term plays a key role. with NEW efficiency the slope is lower and then also the constant

Net effect w.r.t. OLD result is negligible for constant term not for other parameters

$\omega\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}\omega$ mass

