

Blessing of the $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ analysis: measurement of the BR and of the decay plane asymmetry

S. Giovannella and R. Versaci

Motivations Data sample Event and track selection **Background rejection part-1** Particle ID **Background rejection part-2 Efficiencies** Fit results Data - MC comparison Asymmetry

Motivations

 η structure, using virtual photon Model comparison (VMD, χ PT) Mod.PhysLett.A17 Test of CP violation: Gao model 1583-1588.2002 Angular asymmetry between ee and $\pi\pi$ planes, A_{CP}, can be due to unconventional CPV mechanism described by a T \times V 4 quarks operator with Ds=0. Within SM constrained by BR($\eta \rightarrow \pi \pi$), using the experimental upper limit: $A_{CP} < 10^{-4}$ using theoretical prediction: $A_{CP} \sim 10^{-15}$ CPV model predicts an upper bound of 10⁻²

BR: theory & experiment

Jarlskog, Pilkuhn 1967 Using PDG08 (29.9 ± 1.0) × 10 ⁻⁵	0.0065 × BR(η→ $\pi^+\pi^-\gamma$) Using CLEO '07 (25.7 ± 1.3) × 10 ⁻⁵
Picciotto, Richardson 1993	(32 ± 3) × 10 ⁻⁵
Faessler et al. 2000	36 × 10 ⁻⁵
Borasoy, Nissler 2007	(29.9 ^{+0.6} _{-0.9}) × 10 ⁻⁵
CMD-2 (4 events)	(37 ⁺²⁵ _{-18 stat} ± 3 _{syst}) × 10 ⁻⁵
CELSIUS-WASA-2006 (16 events)	$(43 \pm 13_{stat} \pm 4_{syst}) \times 10^{-5}$
CELSIUS-WASA-2007 (16 events)	$(43^{+20}_{-16 \text{ stat}} \pm 4_{\text{syst}}) \times 10^{-5}$

Data sample

Using drc/mrc streams with ETA4C tag

1734 pb⁻¹ data 2004/05 50517 pb⁻¹ MC signal only \longrightarrow Run by run 3479 pb⁻¹ MC all_phys(2/3) 2004/05 250 pb⁻¹ data off-peak ($\sqrt{s} = 1000$ MeV)

Event selection

EVCL algorithm ETA4CTAG:

- \geq 4 tracks from the Interaction Point
- 1 high energy neutral cluster ($E_{cl} \ge 250 \text{ MeV}$)
- 0 medium energy neutral cluster ($50 \le E_{cl} \le 250 \text{ MeV}$)

Track selection

Tracks are required to came from a cylinder around the IP:

 $R \le 4 \text{ cm}$ h/2 = 10 cm

Check on broken tracks is applied:

 $\Delta P_{T} < 4.5 \text{ MeV}$ $\Delta P_{Z} < 3 \text{ MeV}$

 \geq 2 positive and \geq 2 negative tracks are requested

Tracks are ordered by momentum

Track identification

Higher momentum tracks assigned to pion

Kinematic fit

A kinematic fit to the ϕ meson is performed for all the events having # good tracks \geq 4

The 22 inputs are:

- 4 tracks x 3 momenta
- x,y,z,E,t of the neutral cluster
- x,y,z of the IP
- \sqrt{s} and f momentum

The 5 constraints are:

- Four momentum conservation
- Photon time of flight $(cT_{\gamma} = R_{\gamma})$

www.buconero.eu

www.buconero.eu

3039

33000

544.2

7.553

125.0

247.0

0.3263E+05

580

590

600

4500 Asymmetry in $M\pi\pi ee$ spectrum ID Entries Mean 4000 RMS due to *wrong mass assignment* UDFLW OVFLW 3500 ALLCHAN 3000 Can be improved using TOF 2500 sigmc 2000 We evaluate $\Delta t = t_{track} - t_{cluster}$ 1500 in both electron (Δt_{a}) 1000 and pion (Δt_n) hypothesis 500 510 560 570 520 530 540 550 500 M_{ππee}[MeV] 0.04 4 #tracks associated Also look for kink (i.e. decay) ≥3 0.29 to cluster and ≥2 0.74 Extrapolation to EMC fraction of events 0.99≥1 using Spadaro's libraries

Can be very powerful

Mee@BP > 15 MeV .or. Dee@BP > 2.5 cm

Backgrounds

Signal

$<\cos\theta_{f}> < 0.85$ and $<\cos\theta_{b}> > -0.85$

Small angle tracks

A particle hits something in the BP producing two more particles

 $<\cos\theta_{\rm f}> < 0.85$ and $<\cos\theta_{\rm b}> > -0.85$

Data

F)

 $<\cos\theta_{f} > < 0.85$ and $<\cos\theta_{b} > > -0.85$

Data

Off-peak data

Tracking efficiency

Procedure review

- 1. EVCL ETA4CTAG
- 2. Momenta 450 < s4p < 600 MeV .and . 270 < s2p < 460 MeV
- 3. χ^2 $\chi^2 < 4000$

At this level we perform the fit to get the scale factors

- 4. **Conversions** Mee > 15 MeV .or. Dee > 2.5 cm (@BP)
- 5. Low θ <cos θ_{f} > < 0.85 .and. <cos θ_{b} > > -0.85
- 6. $M_{\pi\pi ee}$ 535 < $M_{\pi\pi ee}$ < 555 MeV

At this level we count

Fit description

- Stand alone program using HBOOK and MINUIT
- Fit performed on sidebands: [420.,530.] MeV U [560.,680.] MeV
- Components used:
 MC all_phys and off-peak data
- Off-peak data scale factor fixed using luminosity because of its small statistics SF_{offpeak} = L_{data} / L_{offpeak} = 7.14
 √s has been accounted for

Data
Total
MC all_phys
Off-peak data
Signal MC

Fit result

 χ^2 /dof = 32.1/30

$$SF_{ap} = 0.522 \pm 0.018$$

 $SF_{op} = 7.14 \pm 0.03$

www.buconero.eu

Data
Total
MC all_phys
Off-peak data
Signal MC

350

300

250

200

150

100

50

Fit result

 χ^2 /dof = 32.1/30

$$SF_{ap} = 0.522 \pm 0.018$$

 $SF_{op} = 7.14 \pm 0.03$

www.buconero.eu

Data	Ua
Total	
MC all_phys	
Off-peak data	
Signal MC	

Data	
Total	
MC all_phys	
Off-peak data	
Signal MC	

www.buconero.eu

Data	
Total	
MC all_phys	
Off-peak data	
Signal MC	

Entries Entries UDFLW 0.000 0.000 **UDFLW OVFLW** 9.000 0.000 **OVFLW** 275 300 325 450 475 E_{Recoil cluster} [MeV] E_{Recoil cluster} [MeV] 28/35 www.buconero.eu

Data-MC comparison

	Da
Data	Ua
Total	
MC all_phys	
Off-peak data	
Signal MC	

Data Total MC all_phys Off-peak data Signal MC

Data-MC comparison

Removing the cut on Mee Under the η peak [535,555] MeV

BR calculation

BR = N_{ev} /
$$\epsilon$$
 L $\sigma_{\phi \to \eta \gamma}$

Systematics

Evaluated varying:		
sidebands range	0.04 · 10 ⁻⁵	
histogram binning	0.02 · 10 ⁻⁵	
analysis cuts ±3σ	0.55 · 10 ⁻⁵	
 SF free/fix with luminosity 	0.29 · 10 ⁻⁵	0.62 · 10⁻⁵
Analysis cuts:		
 χ² 	0.14 · 10 ⁻⁵	
• Dee	0.03 · 10 ⁻⁵	
• Mee	0.45 · 10 ⁻⁵	
• s2p	0.22 · 10 ⁻⁵	
• s4p	0.01 · 10 ⁻⁵	
• Μππεε	0.18 · 10 ⁻⁵	
Iow θ	0.02 · 10 ⁻⁵	0.55 · 10⁻⁵

BR calculation

Asymmetry

$$\pi^{+}$$
 π^{-} π^{-}

$$\sin \phi \cos \phi = (\hat{n}_{ee} \times \hat{n}_{\pi\pi}) \hat{z} (\hat{n}_{ee} \cdot \hat{n}_{\pi\pi})$$

Asymmetry

Analysis does not distort the generated asymmetry

Reconstruction distorts the asymmetry

Reconstruction distorts the asymmetry

Higher polynomial does not improve the fit

Asymmetry

Asymmetry

Open points

How to quote the final result on the asymmetry
 Signal MC does not take into account FSR
 ...

Backup slides

Motivations

Consider $\eta \rightarrow \pi \pi \gamma$: most general decay amplitude using Lorentz and gauge invariance

 $A \propto \bar{u}(k_{-}) \gamma_{\mu} v(K_{+}) (M \epsilon^{\mu\nu\alpha\beta} p_{+\nu} p_{-\alpha} q_{\beta} + E_{+} p_{+}^{\mu} + E_{-} p_{-}^{\mu})$

M parity conserving E+- parity violating CP arises from E-M interference visible in the photon polarization

Summing over photon polarization CP not visible anymore but still visible in decay plane asymmetry $ee-\pi\pi$

Non negligible CPV \Leftrightarrow operator not contributing to ϵ,ϵ' and d_n

u

Algorithm for mass assignment

T#1 = Track #1 T#2 = Track #2

1-Look for track pair having the same charge and extrapolation to the calorimeter (both tracks)

T#1 with kinkT#1= π T#2 without kinkT#2=e

2-For all other tracks use Δt_e vs Δt_{π} to assign mass

3-Use pair's charge to solve ambiguities

Algorithm for mass assignment

3-Use pair's charge to solve ambiguities

T#1	T#2		
е	е	$min(\Delta t_e) \Rightarrow e$	
е	π	ok	Ordered momenta
е	?	T#2 = p	are used for
π	е	ok	remaining
π	π	$min(\Delta t_e) \Rightarrow e$	assignment
π	?	T#2 = e	ambiguities
?	е	$T#1 = \pi$	≜
?	π	T#1 = e	
?	?	if T#1 w/ kink and T#2 w/o kink	
		\Rightarrow T#1= π & T#2=e (and vice versa)	

using $\rho\pi$ sample work done together with A. De Santis

```
<u>Sample</u>
<u>selection</u>
```

#tracks from IP = 1 or 2
tagging tracks checked for flips

One and only one cluster pair such that: $t_{cl} - r_{cl}/c < min(2 ns, 3s_t)$ $0.65 < cos(\gamma\gamma) < 0.85$ $300 < E_{\gamma\gamma} < 600 \text{ MeV}$ w/o associated tracks (Official TCLO) self-triggering (on the barrel and $E_{cl} > 70 \text{ MeV}$) $|m_{\pi 0} - m_{\gamma\gamma}| < 40 \text{ MeV}$

Efficiency on $\rho\pi$ stream ~ 0.09 Sample purity ~ 0.994

Tracking efficiency

After $\gamma\gamma$ selection, kinematic fit to π^0 mass is applied It improves the knowledge of the missing momentum Cluster energy correction applied E_{eff} =1.014× E_{rec} (KM342)

www.buconero.eu

Tracking efficiency

Multiplicity has to be considered in efficiency evaluation

$$\varepsilon_{obs} = \frac{2N_2P(C_2)}{2N_2P(C_2) + N_1P(C_1)} = \frac{2\varepsilon_1^2}{2\varepsilon_1^2 + 2\varepsilon_1(1-\varepsilon_1)} = \varepsilon_1$$

Efficiency can be evaluated separately per charge

www.buconero.eu

Cluster veto correction

Effect of the veto in ETA4CTAG has been evaluated

<u>Reminder</u>: ETA4CTAG rejects events having neutral clusters in the range $50 < E_{cl} < 250$ MeV

Correction to be applied to the branching ratio

www.buconero.eu

Very good agreement

Very good agreement

Very good agreement (even in the asymmetry!)

Q: Why we didn't see this before?

A: <u>Today</u> we take MC all_phys spectrum as it is,

just scaling for luminosity

Before we used to fit the data spectrum using

the different components separately

Mysterious background was hidden by non- η decays

Non-ø backgrounds

After EVCL $\pi\pi\gamma$ and ee γ still present, $\omega\pi^0$ disappeared Reduced by momenta and χ^2 cuts \Rightarrow Too few events left

www.buconero.eu

