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We have studied the φ → a0(980)γ process with the KLOE detector at the Frascati φ-factory DA�NE
by detecting the φ → ηπ0γ decays in the final states with η → γ γ and η → π+π−π0. We have
measured the branching ratios for both final states: Br(φ → ηπ0γ ) = (7.01 ± 0.10 ± 0.20) × 10−5 and
(7.12 ± 0.13 ± 0.22) × 10−5, respectively. We have also extracted the a0(980) mass and its couplings to
ηπ0, K + K −, and to the φ meson from the fit of the ηπ0 invariant mass distributions using different
phenomenological models.
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1. Introduction

The problem of the internal structure of the scalar mesons with
mass below 1 GeV is still open [1]. It is controversial whether they
are qq̄ mesons [2], qqq̄q̄ states [3], bound states of a K K̄ pair [4]
or a mixing of these configurations.

An important part of the program of the KLOE experiment,
carried out at the Frascati φ-factory DA�NE, has been dedicated
to the study of the radiative decays φ(1020) → P1 P2γ (P1,2 =
pseudoscalar mesons). These decays are dominated by the ex-
change of a scalar meson S in the intermediate state (φ → Sγ ,
and S → P1 P2), and both their branching ratios and the P1 P2 in-
variant mass shapes depend on the scalar structure.

The φ → ηπ0γ decay has been already used by KLOE and
by other experiments to study the neutral component of the
isotriplet a0(980) [5,6]. This process is well suited to study the
φ → a0(980)γ dynamics, since it is dominated by the scalar pro-
duction, with small vector background, contrary to π0π0γ and
π+π−γ cases, where a large irreducible background interferes
with the f0(980) signal [7].

In this Letter the result of the analysis of the φ → ηπ0γ de-
cay, performed on a sample with 20 times larger statistics than
the previously published Letter [5], is presented. The final states
corresponding to η → γ γ and η → π+π−π0 have been selected.
The ηπ0 invariant mass distributions have been fit to two mod-
els of parametrization of the φ → a0(980)γ decay, to extract the
relevant a0(980) parameters (mass and couplings).

2. DA�NE and KLOE

The Frascati φ-factory DA�NE is an e+e− collider operating at a
center of mass energy

√
s = Mφ � 1020 MeV. The beams collide at

an angle of (π − 0.025) rad, thus producing φ mesons with small
momentum (pφ � 13 MeV) in the horizontal plane. The KLOE de-
tector [8] consists of two main subdetectors: a large volume drift
chamber (DC) and a fine sampling lead-scintillating fibers electro-
magnetic calorimeter (EMC). The whole apparatus is inserted in a
0.52 T axial magnetic field, produced by a superconducting coil.
The DC is 3.3 m long, with inner and outer radii of 25 and 200 cm
respectively. It contains 12 582 drift cells arranged in 58 stereo lay-
ers uniformly distributed in the sensitive volume and it is filled
with a gas mixture of 90% helium and 10% isobutane. Its spatial
resolution is 200 μm and the tracks coming from the beam in-
teraction point (IP) are reconstructed with σ(p⊥)/p⊥ � 0.4%. The
position resolution for two track vertices is about 3 mm.

The DC is surrounded by the EMC, that covers 98% of the solid
angle, and is divided into a barrel, made of 24 trapezoidal mod-
ules about 4 m long, with the fibres running parallel to the barrel
axis, and two endcaps of 32 module each, with fibers aligned ver-
tically. The read-out granularity is ∼ 4.4 × 4.4 cm2, for a total of
2440 cells, read at both ends by photomultipliers. The coordinate
of a particle along the fiber direction is reconstructed from the
difference of the arrival time of the signals at the two ends of the
cell. Cells close in time and space are grouped together into clus-
ters. The cluster energy is the sum of the cell energies, while the
cluster time and position are energy weighed averages. The energy
and time resolutions for photons are σE/E = 5.7%/

√
E(GeV) and

σt = 57 ps/
√

E(GeV) ⊕ 100 ps, respectively. Cluster positions are
measured with resolutions of 1.3 cm in the coordinates transverse
to the fibers, and 1.2 cm/
√

E(GeV) in the longitudinal coordinate.
The detection efficiency for photons of E � 20 MeV is greater than
80% and reaches almost 100% at E > 80 MeV.

The KLOE trigger is based on the detection of two energy de-
posits in the EMC, with E > 50 MeV in the barrel and E > 150 MeV
in the endcaps.

3. Event selection

The results are based on the data collected during the 2001–
2002 run, at

√
s � Mφ . Of the two selected decay chains, the

fully neutral one is characterized by high statistics and large back-
ground, while the charged one has small background but lower
statistics. These two decay chains have been selected with differ-
ent criteria and slightly different data samples have been used:
414 pb−1 for the fully neutral and 383 pb−1 for the charged decay.
Monte Carlo (MC) samples of signal and of background processes
have been produced with the simulation program of the experi-
ment [9]. They have been generated on a run-by-run basis, simu-
lating the machine operating conditions and background levels as
measured in the data. Three MC samples, generated with different
luminosity scale factors (LSF = LMC/Ldata), have been used:

1. The rad sample contains all the radiative φ-decays plus the
non-resonant process e+e− → ωπ0, with LSF = 5;

2. The kk sample contains φ → K 0 K 0 with all subsequent kaon
decays generated with LSF = 1;

3. The all sample contains all the φ decays with LSF = 1/5; it
is used to find possible backgrounds not included in the two
main samples.

The shape of the ηπ0 invariant mass distribution has been sim-
ulated according to the spectrum obtained from the previously
published analysis [5].

3.1. φ → ηπ0γ with η → γ γ

This final state is characterized by five prompt photons originat-
ing from the IP. A prompt photon is defined as an EMC cluster not
associated to any charged track in the DC and satisfying the condi-
tion |t −r/c| < min[5σt(E),2 ns], where t is the photon flight time,
r is the corresponding path length, and c is the speed of light.
Events with exactly five prompt clusters, with E > 3 MeV and po-
lar angle ϑ > 21◦ with respect to the beam line, are selected.

The main background originates from the other five photon fi-
nal states, φ → f0(980)γ → π0π0γ and e+e− → ωπ0 → π0π0γ ,
and from the seven photon process, φ → ηγ with η → 3π0, which
can mimic five photon events due to either photon loss or clus-
ter merging. Also the three photon final states, φ → η(π0)γ with
η(π0) → γ γ , give a small contribution to the selected sample,
when fake clusters are produced either by accidental coincidence
with machine background or by cluster splittings. Other back-
ground processes are negligible.

The following analysis steps are then applied to the selected
events.

1. First kinematic fit which imposes the total 4-momentum con-
servation and the speed of light for each photon, with 9 de-
grees of freedom. Events with χ2 > 27 are rejected. A cut
fit1
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Table 1
Background processes for φ → ηπ0γ , with η → γ γ . (S/B)1 is the signal to background ratio after the preselection, (S/B)2 the same ratio at the end of the whole analysis
chain. The reweighing factors, w , are also listed. Last column reports the final background estimate.

Process (S/B)1 (S/B)2 w Background events

1 φ → f0γ → π0π0γ 0.40 4.4 1.24 ± 0.02 5062 ±60
2 e+e− → ωπ0 → π0π0γ 0.14 3.1 0.96 ± 0.01 3825 ±37
3 φ → ηγ with η → 3π0 0.10 2.8 1.12 ± 0.04 7248 ±78
4 φ → ηγ with η → γ γ 1.6 200 2.89 ± 0.13 197 ±11
5 φ → π0γ 10 – – –

Total background 0.05 1.0 16 332 ±86
at 980 MeV on the total energy of the three most energetic
photons is also applied to reject residual three photon events
(processes 4 and 5 of Table 1).

2. Search for the best photon pairing to η’s and π0’s, by choos-
ing the combination that minimizes the χ2-like variable
(i, j,k, l = 1, . . . ,5 are the photon indices):

χ2
pair = (Mij − M P1)

2

σ 2
M P1

+ (Mkl − M P2)
2

σ 2
M P2

for both P1 P2 = ηπ0 (signal) or π0π0 (background) hypothe-
ses. σM

π0 and σMη are the width of the π0 and η peaks after
the first kinematic fit (σM

π0 = 6 MeV and σMη = 9 MeV).
3. Second kinematic fit with the two additional constraints of the

masses of the intermediate particles. The number of degrees of
freedom is 11.

Background from process 1 and 3 of Table 1 dominates the tail of
the distribution of the χ2

fit2 of the second kinematic fit, as shown
in Fig. 1, and it can be reduced by cutting at χ2

fit2 < 24. By us-
ing the photon pairing in the background hypothesis, π0π0γ , the
Dalitz plot of Fig. 1 is obtained: the f0γ background populates the
lower right corner, while the two straight bands are the contri-
bution of ωπ0. The a0 signal is contained in the region between
these bands. The ωπ0 background is strongly reduced by cutting
out the two bands shown in Fig. 1.

Assuming the background hypothesis ωπ0, the angle θ� be-
tween the non associated photon and the ω flight direction can be
defined. The regions at large | cos θ�| (Fig. 2(left)) are dominated by
ωπ0 and f0γ backgrounds. The cut | cos θ�| < 0.8 is then applied.
Another effective cut to reduce the f0γ background is θ23 > 42◦
(Fig. 2(right)), where θ23 is the angle between the second and third
photons ordered by decreasing energy.

After these cuts the overall selection efficiency, evaluated by
MC, is almost independent from the ηπ0 invariant mass and its
average value is 38.5%. The final sample consists of 29 601 events
and the expected S/B ratio is about 1.0 (see Table 1). The residual
background is irreducible and has to be evaluated and subtracted.
In order to obtain a precise evaluation of the amount of each back-
ground process, the following procedure has been adopted.

1. A data control sample dominated by each specific background
process, with a signal content below few percent, has been
selected.

2. Selected kinematical distributions have been fit to the corre-
sponding MC shapes.

3. The ratio of the number of events found by the fit and the
number of expected events from MC is the weight assigned to
that process (see Table 1). This weight is a correction factor
for the absolute value of the MC cross section for that specific
background.

Since these correction factors are correlated, a combined fit on the
four data samples, with all the weights as free parameters, has
Table 2
Correlation coefficients among the MC correction factors.

w f0γ wωπ0 wηγ 7 wηγ 3

w f0γ 1.

wωπ0 −0.057 1.

wηγ 7 −0.358 −0.329 1.

wηγ 3 0.053 −0.025 −0.028 1.

been performed. The results are in agreement with the values ob-
tained from the separate fits, and the correlation matrix is shown
in Table 2. In last column of Table 1 the applied weights and the
numbers of background events in the final sample are listed. The
uncertainties are the combination of MC statistics and of the sys-
tematics on the applied weights. The correlations have also been
taken into account. After the background subtraction the num-
ber of signal event is 13 269 ± 192. In Fig. 3 the ηπ0 invariant
mass distribution of the final sample is shown together with the
background contributions. The invariant mass resolution is about
4 MeV, with non-gaussian tails mainly due to wrong photon com-
binations. In the same figure, the distribution of the polar angle
θrec of the recoil photon is plotted. After the background subtrac-
tion good agreement with the expected 1 + cos2 θrec behaviour is
obtained.

3.2. φ → ηπ0γ with η → π+π−π0

With respect to the fully neutral one, this decay provides a
lower statistics since the branching ratio of η → π+π−π0 is
smaller than for η → γ γ . Moreover a lower acceptance is expected
due to the larger number of particles to be detected. However
in this case there is a smaller background contamination, since
no other final state with two tracks and five photons has a sig-
nificant branching ratio from the φ. The main sources of back-
ground are due to final states with two tracks and either four or
six photons. In order of importance there are: e+e− → ωπ0 with
ω → π+π−π0 and a fake cluster; φ → K S KL with K S → π+π−
and prompt KL → 3π0 with one photon lost; φ → K S KL with
K S → π0π0 and prompt KL → π+π−π0 or πν with either one
photon lost or one fake cluster; φ → ηγ with η → π+π−π0 plus
two fake clusters.

The signal preselection requires the detection of two charged
tracks and of five photons. The following requirements are then
applied:

1. A vertex with two opposite sign tracks in a cylinder, around
the IP, of 5 cm radius and 11 cm length;

2. Five prompt photons with E > 10 MeV;
3. Total energy in the range 900 < Etot < 1160 MeV and total

momentum | 
P tot| < 110 MeV/c;
4. The scalar sum of the momenta of the two pions PΣ = | 
p1| +

| 
p2|, outside the range 418 < PΣ < 430 MeV/c, which identi-
fies events with K S → π+π− .
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Fig. 1. Right: χ2 of the second kinematic fit; the applied cut at χ2
fit2 = 24 is also shown. Left: Dalitz plot of data in the background hypothesis (π0π0γ ).

Fig. 2. Left: cos θ� distribution (see text for explanation). Right: angle between the second and third photons ordered by decreasing energy (vertical lines represent the
applied cuts).

Fig. 3. Left: ηπ0 invariant mass distribution of the neutral channel. Right: distribution of the cosine of the polar angle of the recoil photon (dots), compared with the MC
expectation (solid line).
Events surviving this preselection go to the kinematic fit stage,
similar to that of the neutral channel.

1. A kinematic fit with 9 degrees of freedom is performed by
imposing only the total 4-momentum conservation and speed
of light for the photons; events with χ2

fit1 < 17 are retained.
2. Photons are combined to build π0’s and η’s. There are 15

possibilities to get two π0’s out of five photons. For each of
them there are two choices in the association of one π0 to the
π+π− pair. For each of these 30 combinations χ2

pair is com-
puted according to (i, j,k, l = 1, . . . ,5 are the photon indices):
χ2
pair = (Mij − Mπ0)2

σ 2
M

π0

+ (Mkl − Mπ0)2

σ 2
M

π0

+ (Mπ+π−π0 − Mη)2

σ 2
Mη

.

Events with at least one combination with χ2
pair < 10 are re-

tained.
3. The second kinematic fit is performed on all the combina-

tions selected by the previous step adding the three mass con-
straints, for a total of 12 degrees of freedom. The combination
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Fig. 4. χ2 distributions for the first (left) and second (right) kinematic fit. The selected data sample (points) is compared to the MC expectation (dark grey histograms) given
by the weighed sum of the signal and the estimated background (light grey histograms).
with the lowest χ2
fit2 is chosen. Only events with χ2

fit2 < 20 are
retained.

4. Finally, events with the recoil photon energy below 20 MeV
are discarded to remove events with a spurious low energy
photon.

The final sample consists of 4181 events. The overall selection ef-
ficiency for the signal, evaluated by MC, is 19.4%, almost indepen-
dent from the ηπ0 invariant mass, decreasing only at very high
invariant mass values. Fig. 4 shows the data–MC agreement for
the χ2 distributions of the first and second kinematic fits. The MC
distributions include signal and background events. The mass reso-
lution is about 4 MeV for all mass values, with non-gaussian tails,
mainly due to events with a wrong photon combination.

The residual background is evaluated by applying the selection
procedure on MC samples and by checking the absolute normal-
ization on background enriched data control samples. In order to
properly normalize the observed numbers of events, data and MC
samples after the preselection but before the kinematic fit have
been used. At this level the expected contribution of the signal
does not exceed 2–3%. Four variables have been chosen to com-
pare data and MC samples: Etot, | 
P tot|, Mγ γ and Mππγ γ where
Mγ γ is the invariant mass of any pair of photons (10 combina-
tions per event) and Mππγ γ is the invariant mass of the two pions
and any pair of two photons (again 10 combinations per event).
The four distributions for the data are simultaneously fit with the
weighed sum of the same MC distributions for each background
sample and for the signal. The weights of the rad and kk samples
are the free parameters. wrad = 0.45 and wkk = 1.3 are obtained,
from which the numbers of background events Brad = 307 and
Bkk = 264 are estimated. 8 additional background events from the
all sample have also to be taken into account. The fit has been
repeated separately on each control distribution and the spread
obtained in the estimated number of events is taken as systematic
uncertainty. The total number of background events is 579 ± 27,
where the uncertainty is the quadratic sum of the statistical and
the systematic uncertainties. This background accounts for about
14% of the selected events.

Fig. 5 shows the ηπ0 invariant mass distribution. In the same
figure, the distribution of the polar angle of the recoil photon is
shown, and is compared to the MC expected behaviour. Also in
this case the distribution agrees with the 1 + cos2 θrec dependence
of the signal.

3.3. Branching ratio evaluation

The branching ratio of the process φ → ηπ0γ is obtained from
the formula
Table 3
Main sources of systematic uncertainty on the branching ratio (3).

Source Uncertainty (×10−5)

Photon counting 0.08
Selection efficiency 0.12
Br(η → γ γ ) 0.04
Br(φ → ηγ ) 0.13
Br(η → π0π0π0) 0.05

Br
(
φ → ηπ0γ

) = N f − B f

ε f N( f )
φ Br(η → f )

(
f = γ γ ,π+π−π0) (1)

where N f is the total number of selected events, B f the estimated
background, ε f is the average efficiency. Nφ is the number of pro-
duced φ mesons evaluated from the number Nηγ of φ → ηγ with
η → π0π0π0 events,

Nφ = Nηγ

εηγ Br(φ → ηγ )Br(η → π0π0π0)
. (2)

The Br(π0 → γ γ ) is not included in Eqs. (1) and (2) since it has
been already taken into account in the MC. The normalization sam-
ple has been selected by requiring no tracks in the DC and six or
more prompt clusters in the EMC, in the same runs used for the
signal selection. Nηγ = 4.2 × 106 events have been found in the
sample used for the analysis of the fully neutral decay chain, with
efficiency εηγ = 81%, corresponding to N(γ γ )

φ = (1.24±0.03)×109.
By using Br(η → γ γ ) = (39.31 ± 0.20)% [10], the branching ra-

tio is obtained:

Br
(
φ → ηπ0γ

) = (7.01 ± 0.10 ± 0.20) × 10−5. (3)

The first uncertainty is due to statistics and to the background
subtraction. Several sources of systematics have been taken into
account (see Table 3): photon counting (dominated by the detec-
tion efficiency for low energy photons), the data–MC discrepancies
in the evaluation of the selection efficiency, and the normalization
uncertainty.

The data sample analyzed for the charged decay channel is

slightly smaller than the other one, N(π+π−π0)
φ = (1.15 ± 0.03) ×

109. By using Br(η → π+π−π0) = (22.73 ± 0.28)% [10]

Br
(
φ → ηπ0γ

) = (7.12 ± 0.13 ± 0.22) × 10−5 (4)

is obtained. The first uncertainty is the quadratic sum of the sta-
tistical uncertainty on Nπ+π−π0 and of the uncertainty on the
background; the second one is systematic, mainly due to the ab-
solute normalization, and includes a 1% error due to the efficiency
evaluation.



10 KLOE Collaboration / Physics Letters B 681 (2009) 5–13
Fig. 5. Left: ηπ0 invariant mass distribution for the final data sample (points) compared to the estimated background (dark histogram). Right: polar angle of the recoil photon
for data (points) and for MC expectations (histogram). Dark histogram represents the background.
The two branching ratios (3) and (4) are compatible with
the old KLOE results: (8.51 ± 0.51 ± 0.57) × 10−5(η → γ γ ) and
(7.96 ± 0.60 ± 0.40) × 10−5(η → π+π−π0) [5]. By combining the
two results, taking into account the common normalization error

Br
(
φ → ηπ0γ

) = (7.06 ± 0.22) × 10−5 (5)

is obtained, where the uncertainty is both statistic and systematic.

4. Fit of the ηπ0 invariant mass distributions

In order to extract the relevant parameters of the a0, a si-
multaneous fit, with the same set of free parameters, has been
performed on the two ηπ0 invariant mass distributions, by mini-
mizing the following χ2:

χ2 =
∑

f =γ γ ,π+π−π0

n f∑
i=1

(N( f )
i − B( f )

i − E( f )
i )2

σ
( f )
i

2

where n f is the number of bins of respectively the fully neutral
and charged ηπ0 mass distribution; Ni is the content of the i-th
bin and Bi is the number of background events to be subtracted
from the i-th bin. The expected number of events, Ei , can be writ-
ten as

E( f )
i = N( f )

φ

n f∑
j=1

ε
( f )
i j

1

Γφ

∫
bin j

dΓth(φ → ηπ0γ )

dm
dm × Br(η → f )

where m = Mηπ0 , and Γφ = 4.26 MeV [10]. ε
( f )
i j is the efficiency

matrix (also referred to as smearing matrix), representing the
probability of a signal event with “true” mass in the j-th bin of
the spectrum to be reconstructed in the i-th bin. The efficiency
matrices, evaluated by MC, are almost diagonal; the off-diagonal
elements take into account resolution effects as well as wrong
photon pairings. The differential decay width dΓth/dm has been
parametrized according to two different models.

In the “Kaon Loop” (KL) model [11] the φ is coupled to the
scalar meson through a loop of charged kaons. The theoretical
function can be written as

dΓth(φ → ηπ0γ )

dm
= dΓscal

dm
+ dΓvect

dm
+ dΓinterf

dm
. (6)

The scalar term dΓscal/dm is described in some details in
Appendix A. dΓvect/dm, is dominated by φ → ρπ0 with ρ → ηγ
and is described in the framework of the Vector Dominance Mod-
els (VDM) [12]. Last term is the interference between the scalar
and the vector amplitudes.
The free fit parameters are: the a0 mass, the couplings ga0 K + K − ,
ga0ηπ0 , the branching ratio of the vector contribution, the relative
phase δ between scalar and vector amplitudes, and, as a rela-
tive normalization between the two different final states, the ratio
Rη = Br(η → γ γ )/Br(η → π+π−π0).

An alternative parametrization of the amplitude of the decay
φ → ηπ0γ has been also used, following Ref. [13]. A point-like
coupling of the scalar to the φ meson is assumed, hence this
model will be called “No Structure” (NS) in the following. The
scalar meson is parametrized as a Breit–Wigner interfering with
a polynomial scalar background and with a vector background (see
Appendix B). The free parameters in this case are the couplings
ga0 K + K − , ga0ηπ0 , and gφa0γ , the ratio Rη , the branching ratio of
the vector background, and two complex coefficients, b0 and b1, of
the scalar background. The a0 mass is fixed to avoid fit instabili-
ties, due the large number of free parameters, and due to the large
cancellations that occur among the terms of Eq. (9). The chosen
value of the a0 mass is the result of the KL fit.

The fit results are shown in Fig. 6, and the parameter values are
listed in Table 4. Good χ2 probability is obtained for both models.

The ratio Rη is in good agreement with the PDG value 1.729 ±
0.028 [10], confirming that the two samples are consistent with
each other.

A vector background smaller than the VDM predictions,
(3–5) × 10−6 [12,15], is found in both fits, indicating that the
φ → ηπ0γ process is largely dominated by φ → a0γ .

In the KL case, the a0 mass is in agreement with the PDG value
(985.1 ± 1.3) MeV [10]. A ratio of the squared coupling constants
Ra0 = g2

a0 K + K −/g2
a0ηπ0 = 0.58 ± 0.03 ± 0.03 can be derived in the

KL case. The couplings ga0 K + K − and ga0ηπ0 of the NS fit and there-
fore the ratio Ra0 = 0.67 ± 0.04 ± 0.13 are in agreement with the
KL values.

This ratio Ra0 is in good agreement with the previous mea-
surements: the SND Collaboration obtained Ra0 = 1.8+2.5

−1.5 [6] using
φ → ηπ0γ → 5γ with low statistics, while a more precise deter-
mination has been obtained with the Crystal Barrel data on p̄p
annihilation at rest into ωηπ0 and ηπ0π0, Ra0 = 0.58 ± 0.09 [16].
A recent reanalysis of those data gave Ra0 = 0.525 ± 0.035 ± 0.025
[17].1

The gφa0γ is not a free parameter of KL model, but can be ob-
tained according to the formula:

1 The authors of Refs. [16] and [17] define g2
a0 K K = 2g2

a0 K + K − , therefore their ratio

g2
a K K /g2

0 is twice the ratio Ra0 used in this Letter.

0 a0ηπ
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Fig. 6. Fit results: points are data after background subtraction; histograms represent the fit functions for KL (solid) and NS (dashed) models.

Table 4
Fit results for KL and NS models.

KL NS

Ma0 (MeV) 982.5 ± 1.6 ± 1.1 982.5 (fixed)
ga0 K + K − (GeV) 2.15 ± 0.06 ± 0.06 2.01 ± 0.07 ± 0.28
ga0ηπ0 (GeV) 2.82 ± 0.03 ± 0.04 2.46 ± 0.08 ± 0.11
gφa0γ (GeV−1) 1.83 ± 0.03 ± 0.08
δ (deg.) 222 ± 13 ± 3
B.r. of vector background(×106) 0.92 ± 0.40 ± 0.15 ∼ 0
Rη 1.70 ± 0.04 ± 0.03 1.70 ± 0.03 ± 0.01
|b0| 14.9 ± 0.6 ± 0.5
arg(b0) (deg.) 38.3 ± 1.1 ± 0.6
|b1| 21.3 ± 1.4 ± 0.9
arg(b1) (deg.) 57.3 ± 1.4 ± 1.1
χ2/ndf 157.1/136 140.6/133
P (χ2) 10.4% 30.9%

Table 5
Correlation coefficients among the relevant a0 parameters.

KL model NS model

Ma0 ga0 K + K − ga0ηπ0 ga0 K + K − ga0ηπ0 gφa0γ

Ma0 1. ga0 K + K − 1.

ga0 K + K − 0.931 1. ga0ηπ0 −0.565 1.

ga0ηπ0 0.584 0.550 1. gφa0γ −0.138 0.657 1.
gφa0γ =
√√√√ 3

α

(
2Mφ

M2
φ − M2

a0

)3

ΓφBr
(
φ → ηπ0γ

)

= 1.58 ± 0.10 ± 0.16 GeV−1. (7)

In the NS case gφa0γ can be determined directly and is compatible
with the value of Eq. (7).

The a0 width obtained from Eq. (8) is Γa0 (Ma0 ) � 105 MeV.
From the NS fit a total decay width Γa0(Ma0 ) � 80 MeV can be
evaluated according to Eq. (10).

In Table 5 the correlation coefficients among the a0 parameters
are shown.

The systematic uncertainties on the parameters account for:

(i) sensitivity to the fixed parameters (the a0 coupling to η′π0,
ga0η′π0 , and gφK + K − in the KL model, Ma0 in the NS model);

(ii) normalization uncertainty;
(iii) data–MC discrepancy of the fraction of wrong photon pairings

(12% from data and 14% from MC).
5. Unfolding of the ηπ0 invariant mass distribution

In order to allow a better comparison with other experimental
results and with theoretical models, the invariant mass distribution
should be corrected for resolution and smearing effects. There-
fore an unfolding procedure has been applied to the ηπ0 invariant
mass distributions by using the method described in [18]. This is
an iterative procedure based on the Bayes theorem, which does not
require the inversion of the smearing matrix.

The unfolding has been performed separately on both invariant
mass distributions before the background subtraction. The smear-
ing matrices are the same used in the fits described in Section 4.

An initial distribution has to be provided as starting point of
the iterative procedure; the unfolded distributions obtained start-
ing from the output of the KL fit or from a flat distribution in Mηπ0

differ by less than 3%. This difference has been taken into account
in the uncertainty evaluation.

The bin by bin average of the two unfolded distributions is
used to calculate the differential branching ratio (1/Γφ)(dΓ (φ →
ηπ0γ )/dMηπ0 ) reported in Table 6. The uncertainties are both
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Table 6
Differential branching ratio: m is the bin center, the errors are the total uncertainties, and the bin width is 6.35 MeV.

m (MeV) (1/Γφ)(dΓηπ0γ /dm) × 107 (MeV−1) m (MeV) (1/Γφ)(dΓηπ0γ /dm) × 107 (MeV−1)

691.53 0.06 ± 0.07 850.35 2.25 ± 0.13
697.88 0.18 ± 0.10 856.71 2.35 ± 0.14
704.24 0.18 ± 0.12 863.06 2.27 ± 0.13
710.59 0.31 ± 0.13 869.41 2.35 ± 0.13
716.94 0.30 ± 0.08 875.76 2.42 ± 0.16
723.29 0.38 ± 0.11 882.12 2.59 ± 0.16
729.65 0.53 ± 0.17 888.47 2.80 ± 0.14
736.00 0.51 ± 0.13 894.82 2.92 ± 0.19
742.35 0.53 ± 0.05 901.18 3.18 ± 0.20
748.71 0.67 ± 0.07 907.53 3.37 ± 0.17
755.06 0.81 ± 0.07 913.88 3.48 ± 0.17
761.41 0.94 ± 0.10 920.24 3.67 ± 0.17
767.76 0.99 ± 0.11 926.59 3.94 ± 0.17
774.12 0.99 ± 0.08 932.94 4.29 ± 0.25
780.47 1.08 ± 0.09 939.29 4.63 ± 0.25
786.82 1.30 ± 0.10 945.65 4.89 ± 0.21
793.18 1.27 ± 0.13 952.00 5.20 ± 0.22
799.53 1.42 ± 0.28 958.35 5.40 ± 0.28
805.88 1.63 ± 0.28 964.71 5.44 ± 0.33
812.24 1.71 ± 0.14 971.06 5.35 ± 0.22
818.59 1.79 ± 0.16 977.41 4.94 ± 0.21
824.94 1.66 ± 0.18 983.76 4.02 ± 0.19
831.29 1.82 ± 0.15 990.12 2.80 ± 0.27
837.65 1.96 ± 0.12 996.47 1.51 ± 0.32
844.00 2.13 ± 0.13
from statistics (data and MC) and from systematics. The main con-
tribution to the systematic error is the difference between the two
unfolded distributions. The correlation of the contents of nearest
neighbour bins of invariant mass is about 50%, for next-nearest
neighbour bins is about 20%, and is negligible for bin distance
greater than two.

An additional uncertainty of 3% on the absolute scale has to be
considered, according to Eq. (5).

To check this procedure, the unfolded distribution has been fit
to the KL model, without requiring any smearing matrix. The pa-
rameters values are in good agreement with those of Table 4.

6. Conclusions

A high statistics study of the process φ → ηπ0γ has been per-
formed, by selecting the decay chains corresponding to η → γ γ
and η → π+π−π0.

Br(φ → ηπ0γ ) = (7.01±0.10±0.21)×10−5 and (7.12±0.13±
0.22) × 10−5 respectively have been measured.

A simultaneous fit of the two invariant mass distributions has
been performed, which shows that the two samples are consistent
with each other.

Both models used in the fits, the φ-scalar meson coupling
through the kaon loop (KL model) and the direct coupling (NS
model), are able to reproduce the experimental ηπ0 mass distri-
bution.

From the fit results that φ → ηπ0γ decay is dominated by φ →
a0(980)γ , since the vector contribution is very small, Br(e+e− →
V P → ηπ0γ ) < 10−6.

The fit allows also the extraction of the a0(980) mass and its
couplings to ηπ0, K +K − , and to the φ meson. The mass agrees
at one standard deviation level with the PDG value. The two sets
of couplings obtained from the fits agree with each other. Us-
ing these couplings, a total decay width of the a0(980) in the
range 80–105 MeV is estimated. The ratio Ra0 = g2

a0 K + K −/g2
a0ηπ0 �

0.6–0.7 is obtained; this value agrees with the previous measure-
ments. A large gφa0γ has been found (1.6–1.8 GeV−1) suggesting
a sizeable strange quark content of the a0(980).
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Appendix A. Main formulas of the KL model [11]

The scalar term of Eq. (6) has the form:

dΓscal

dm
= 2|gφK + K − g(m)|2 pηπ0(M2

φ − m2)

3(4π)2M3
φ

∣∣∣∣ ga0 K + K − ga0ηπ0

Da0(m)

∣∣∣∣
2

where

pηπ0 =
√

[m2 − (Mη − Mπ0)2][m2 − (Mη + Mπ0)2]
2m

.

The detailed formulation of the KL function g(m) can be found
in [11]. Da0 (m) is the inverse propagator of the a0:

Da0(m) = M2
a0

− m2 +
∑
ab

[
ReΠab(Ma0) − Πab(m)

]
.

The sum is extended over all the possible two particle decays of
the a0: ab = ηπ0, K +K − , K 0 K̄ 0, and η′π0.
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The a0 width is:

Γa0(m) =
∑

ab ImΠab(m)

m
=

∑
ab g2

a0abρab(m)

16πm
(8)

where:

ρab(m) =
√(

1 − (ma + mb)
2

m2

)(
1 − (ma − mb)

2

m2

)
.

The parameters of the scalar term that are determined by the fit
are the a0 mass and the couplings ga0 K + K − and ga0ηπ0 . The a0

to η′π0 coupling is fixed either to ga0η′π0 = −√
2 cosϕP ga0 K + K −

(qqq̄q̄ hypothesis) or to ga0η′π0 = 2 sinϕP ga0 K + K − (qq̄ hypothesis),
where ϕP is the pseudoscalar mixing angle (the value ϕP = 39.7◦
has been used [19]). Another fixed parameter is the coupling of
the φ to the K +K − pair:

gφK + K − = Mφ

√
48πBr(φ → K +K −)Γφ

(M2
φ − 4M2

K )3/4
= 4.49 ± 0.07.

Appendix B. Main formulas of the NS model [13]

The differential decay width of the NS model is the following:

dΓth(φ → ηπ0γ )

dm
= 8πα

3

pηπ0(M2
φ − m2)3

M3
φ

×
∣∣∣∣ gφa0γ ga0ηπ0

m2 − M2
a0 + iMa0Γa0(m)

+ b0

M2
φ

+ b1

M4
φ

(
m2 − M2

a0

) + Avect

∣∣∣∣
2

. (9)

The resonance width is mass dependent according to [14]:

Γa0(m) = Γηπ0(m) + ΓK + K −(m) + ΓK 0 K̄ 0(m)

where:

Γηπ0(m) =
g2

a0ηπ0

8πm2
pηπ0;

ΓK K̄ (m) =
g2

a0 K + K −

16πm

√
1 − (2MK /m)2 for m > 2MK ;
ΓK K̄ (m) =
ig2

a0 K + K −

16πm

√
(2MK /m)2 − 1 for m < 2MK (10)

(with K K̄ = K +K − , K 0 K̄ 0).
The scalar background is parametrized with a polynomial with

two complex coefficients, b0 and b1. The vector background, Avect,
takes into account all processes e+e− → V → V ′ P1 with V ′ →
P2γ (V , V ′ = ρ , ω, φ and P1,2 = η, π0).

References

[1] E. Klempt, A. Zaitsev, Phys. Rep. 454 (2007) 1;
D.V. Bugg, Phys. Rep. 397 (2004) 257;
C. Amsler, N.A. Törnqvist, Phys. Rep. 389 (2004) 61;
F.E. Close, N.A. Törnqvist, J. Phys. G: Nucl. Part. Phys. 28 (2002) R249.

[2] M.D. Scadron, et al., Phys. Rev. D 69 (2004) 014010.
[3] R.L. Jaffe, Phys. Rev. D 15 (1977) 267;

R.L. Jaffe, Phys. Rep. 409 (2005) 1;
L. Maiani, et al., Phys. Rev. Lett. 93 (2004) 212002;
G. ’t Hooft, et al., Phys. Lett. B 662 (2008) 424.

[4] J. Weinstein, N. Isgur, Phys. Rev. Lett. 48 (1982) 659;
J. Weinstein, N. Isgur, Phys. Rev. D 41 (1990) 2236;
Yu.S. Kalashnikova, et al., Eur. Phys. J. A 24 (2005) 437.

[5] KLOE Collaboration, A. Aloisio, et al., Phys. Lett. B 536 (2002) 209.
[6] SND Collaboration, M.N. Achasov, et al., Phys. Lett. B 479 (2000) 53;

CMD-2 Collaboration, R.R. Akhmetshin, et al., Phys. Lett. B 462 (1999) 380.
[7] KLOE Collaboration, F. Ambrosino, et al., Eur. Phys. J. C 49 (2007) 473;

KLOE Collaboration, F. Ambrosino, et al., Phys. Lett. B 634 (2006) 148;
KLOE Collaboration, A. Aloisio, et al., Phys. Lett. B 537 (2002) 21.

[8] KLOE Collaboration, M. Adinolfi, et al., Nucl. Instrum. Methods A 488 (2002)
51;
KLOE Collaboration, M. Adinolfi, et al., Nucl. Instrum. Methods A 482 (2002)
364;
KLOE Collaboration, M. Adinolfi, et al., Nucl. Instrum. Methods A 492 (2002)
134.

[9] KLOE Collaboration, F. Ambrosino, et al., Nucl. Instrum. Methods A 534 (2004)
403.

[10] C. Amsler, et al., Phys. Lett. B 667 (2008) 1.
[11] N.N. Achasov, V.N. Ivanchenko, Nucl. Phys. B 315 (1989) 465;

N.N. Achasov, A.V. Kiselev, Phys. Rev. D 68 (2003) 014006.
[12] N.N. Achasov, V.V. Gubin, Phys. Rev. D 63 (2001) 094007.
[13] G. Isidori, et al., JHEP 0605 (2006) 049.
[14] S.M. Flattè, Phys. Lett. B 63 (1976) 224.
[15] A. Bramon, et al., Phys. Lett. B 283 (1992) 416.
[16] D.V. Bugg, et al., Phys. Rev. D 50 (1994) 4412.
[17] D.V. Bugg, Phys. Rev. D 78 (2008) 074023.
[18] G. D’Agostini, Nucl. Instrum. Methods A 362 (1995) 487.
[19] KLOE Collaboration, F. Ambrosino, et al., Phys. Lett. B 648 (2007) 267.


	Study of the a0(980) meson via the radiative decay phi->etapi0gamma  with the KLOE detector
	Introduction
	DAPhiNE and KLOE
	Event selection
	phi->etapi0gamma with eta->gammagamma
	phi->etapi0gamma with eta->pi+pi-pi0
	Branching ratio evaluation

	Fit of the etapi0 invariant mass distributions
	Unfolding of the etapi0 invariant mass distribution
	Conclusions
	Acknowledgements
	Main formulas of the KL model [11]
	Main formulas of the NS model [13]
	References


