A global fit to determine the pseudoscalar mixing angle and the gluonium content of the η^{\prime} meson

The KLOE collaboration

F. Ambrosino,,$^{c, d}$ A. Antonelli, ${ }^{a}$ M. Antonelli, ${ }^{a}$ F. Archilli, ${ }^{h, i}$ P. Beltrame, ${ }^{b}$
G. Bencivenni, ${ }^{a}$
S. Bertolucci, ${ }^{a}$
C. Bini, ${ }^{f, g}$
C. Bloise, ${ }^{a}$ S. Bocchetta, ${ }^{j, k}$ F. Bossi, ${ }^{a}$
P. Branchini, ${ }^{k}$ G. Capon, ${ }^{a}$ T. Capussela, ${ }^{a}$ F. Ceradini, ${ }^{j, k}$ P. Ciambrone, ${ }^{a}$ E. De Lucia, ${ }^{a}$
A. De Santis, ${ }^{f, g}$ P. De Simone, ${ }^{a}$ G. De Zorzi, ${ }^{f, g}$ A. Denig, ${ }^{b}$ A. Di Domenico, ${ }^{f, g}$
C. Di Donato, ${ }^{d}$ B. Di Micco, ${ }^{j, k, 1}$ M. Dreucci, ${ }^{a}$ G. Felici, ${ }^{a}$ S. Fiore, ${ }^{f, g}$ P. Franzini, ${ }^{f, g}$
C. Gatti, ${ }^{a}$ P. Gauzzi, ${ }^{f, g}$ S. Giovannella, ${ }^{a}$ E. Graziani, ${ }^{k}$ M. Jacewicz, ${ }^{a}$ G. Lanfranchi, ${ }^{a}$
J. Lee-Franzini, ${ }^{a, l}$ M. Martini, ${ }^{a, e}$ P. Massarotti, ${ }^{c, d}$ S. Meola, ${ }^{c, d}$ S. Miscetti, ${ }^{a}$
M. Moulson, ${ }^{a}$ S. Müller, ${ }^{b}$ F. Murtas, ${ }^{a}$ M. Napolitano, ${ }^{c, d}$ F. Nguyen, ${ }^{j, k}$ M. Palutan, ${ }^{a}$
E. Pasqualucci, ${ }^{g}$ A. Passeri, ${ }^{k}$ V. Patera, ${ }^{a, e}$ P. Santangelo, ${ }^{a}$ B. Sciascia, ${ }^{a}$ T. Spadaro, ${ }^{a}$
M. Testa,,$^{f, g}$ L. Tortora, ${ }^{k}$ P. Valente, ${ }^{g}$ G. Venanzoni, ${ }^{a}$ R.Versaci ${ }^{a, e}$ and G. Xu ${ }^{a, m}$

[^0][^1]```
 \({ }^{j}\) Dipartimento di Fisica dell'Università "Roma Tre",
 Via della Vasca Navale 84, Roma, Italy
\({ }^{k}\) INFN Sezione di Roma Tre,
 Via della Vasca Navale 84, Roma, Italy
 \({ }^{l}\) Physics Department, State University of New York at Stony Brook,
 Stony Brook 11794-3800, New York, U.S.A.
\({ }^{m}\) Institute of High Energy Physics of Academia Sinica,
 PO Box 918, 19 Yuquan Road,Shijing Shan Distict, CN-100 039, Beijing, China
 E-mail: dimicco@fis.uniroma3.it
```

AbStRACT: We update the values of the $\eta-\eta^{\prime}$ mixing angle and of the $\eta^{\prime}$ gluonium content by fitting our measurement $R_{\phi}=\mathrm{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right) / \mathrm{BR}(\phi \rightarrow \eta \gamma)$ together with several vector meson radiative decays to pseudoscalars $(V \rightarrow P \gamma)$, pseudoscalar mesons radiative decays to vectors $(P \rightarrow V \gamma)$ and the $\eta^{\prime} \rightarrow \gamma \gamma, \pi^{0} \rightarrow \gamma \gamma$ widths. From the fit we extract a gluonium fraction of $Z_{G}^{2}=0.12 \pm 0.04$, the pseudoscalar mixing angle $\psi_{P}=(40.4 \pm 0.6)^{\circ}$ and the $\phi-\omega$ mixing angle $\psi_{V}=(3.32 \pm 0.09)^{\circ} . Z_{G}^{2}$ and $\psi_{P}$ are fairly consistent with those previously published. We also evaluate the impact on the $\eta^{\prime}$ gluonium content determination of future experimental improvements of the $\eta^{\prime}$ branching ratios and decay width.

Keywords: Phenomenological Models

ArXiv ePrint: 0906.3819

## Contents

1 Introduction ..... 1
2 Fit description ..... 3
3 Update with the recent PDG results ..... 6
4 Update with the new KLOE measurement of $\operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right)$
5 Prospects with improved measurements ..... 9
6 Conclusions ..... 11

## 1 Introduction

The $\eta^{\prime}$ meson, being almost a pure $\mathrm{SU}(3)_{\text {flavour }}$ singlet, is considered a good candidate to host a gluon condensate. The question of a gluonium component in the $\eta^{\prime}$ meson has been extensively investigated in the past but it is still without a definitive conclusion [1]. We extract the $\eta^{\prime}$ gluonium content and the $\eta-\eta^{\prime}$ mixing angle in the constituent quark model according to the Rosner [2] approach with the modifications introduced in ref. [3] as described in the following. We use the same method of ref. [4]; in addition, we also introduce in the fit the $\pi^{0} \rightarrow \gamma \gamma$ and $\eta^{\prime} \rightarrow \gamma \gamma$ branching fractions according to the prescription of ref. [5]. This method relates our measurement of the ratio $\phi \rightarrow \eta^{\prime} \gamma$ and $\phi \rightarrow \eta \gamma$ branching ratio ( BR ), $R_{\phi}=\operatorname{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right) / \mathrm{BR}(\phi \rightarrow \eta \gamma)[6]$, to the $\eta^{\prime}$ gluonium content and to the $\eta, \eta^{\prime}$ mixing angle. The same quantities were extracted in our previous analysis [6] with some assumptions. This has given rise to some objections from refs. [4] and [7]. Here we give an answer to these objections and we repeat the fit taking into account their comments. Then we repeat the fit with recently updated experimental results.

The $\eta$ and $\eta^{\prime}$ states can be represented in the base $|N\rangle=(|u \bar{u}\rangle+|d \bar{d}\rangle) / \sqrt{2},|S\rangle=|s \bar{s}\rangle$ and $|G\rangle=\mid$ gluonium $\rangle$ as:

$$
\begin{align*}
\left|\eta^{\prime}\right\rangle & =\cos \psi_{G} \sin \psi_{P}|N\rangle+\cos \psi_{G} \cos \psi_{P}|S\rangle+\sin \psi_{G}|G\rangle  \tag{1.1}\\
|\eta\rangle & =\cos \psi_{P}|N\rangle-\sin \psi_{P}|S\rangle \tag{1.2}
\end{align*}
$$

where $\psi_{P}$ is the $\eta-\eta^{\prime}$ mixing angle and $Z_{G}^{2}=\sin ^{2} \psi_{G}$ is the gluonium fraction in the $\eta^{\prime}$ meson, while we neglect the gluonium content in the $\eta$ meson. According to ref. [8] the state $|G\rangle$ could be the $\eta(1405)$ : a pseudoscalar glue ball candidate.

The ratio $R_{\phi}=\operatorname{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right) / \mathrm{BR}(\phi \rightarrow \eta \gamma)$ is related to the $\psi_{P}$ and $\psi_{G}$ parameters by the formula [6]:

$$
\begin{equation*}
R_{\phi}=\cot ^{2} \psi_{P} \cos ^{2} \psi_{G}\left(1-\frac{m_{s}}{\bar{m}} \frac{Z_{q}}{Z_{s}} \frac{\tan \psi_{V}}{\sin 2 \psi_{P}}\right)^{2}\left(\frac{p_{\eta^{\prime}}}{p_{\eta}}\right)^{3} \tag{1.3}
\end{equation*}
$$

where $p_{\eta^{\prime}}$ and $p_{\eta}$ are the momenta of the $\eta^{\prime}$ and $\eta$ meson respectively in the $\phi$ reference frame, $m_{s} / \bar{m}=2 m_{s} /\left(m_{u}+m_{d}\right)$ is the constituent quark mass ratio and $\psi_{V}$ is the $\phi-$ $\omega$ mixing angle. Following ref. [3] we define the constant $C_{q}=\left\langle q \bar{q}_{\rho} \mid q \bar{q}_{\eta}\right\rangle$ as the overlap between the spatial wave functions of the quark-antiquark pair in the $\rho$ and the $\eta$ meson. Isospin symmetry is assumed exact, so that $m_{u}=m_{d}=\bar{m}$ and the following further relations follow:

$$
C_{q}=\left\langle q \bar{q}_{\eta} \mid q \bar{q}_{\omega}\right\rangle=\left\langle q \bar{q}_{\eta} \mid q \bar{q}_{\rho}\right\rangle, \quad C_{s}=\left\langle s \bar{s}_{\eta} \mid s \bar{s}_{\phi}\right\rangle, \quad C_{\pi}=\left\langle q \bar{q}_{\pi} \mid q \bar{q}_{\omega}\right\rangle=\left\langle q \bar{q}_{\pi} \mid q \bar{q}_{\rho}\right\rangle
$$

where we indicate with $\left|q \bar{q}_{\eta}\right\rangle$ and $\left|q \bar{q}_{\omega}\right\rangle$ the $q \bar{q}$ spatial wave function in the $\eta$ and $\omega$ mesons, and with $\left|\bar{s}_{\eta}\right\rangle$ and $\left|s \bar{s}_{\phi}\right\rangle$ the $\bar{s} s$ spatial wave function in the $\eta$ and $\phi$ mesons. The parameters $Z_{q}$ and $Z_{s}$ are the ratios: $Z_{q}=C_{q} / C_{\pi}$ and $Z_{s}=C_{s} / C_{\pi}$. In this model $\operatorname{SU}(3)_{\text {flavour }}$ breaking effects are accounted for by the different values of the effective quark masses, $m_{s}>m_{u}=m_{d}=\bar{m}$, and by $Z_{q} \neq Z_{s}$.

In our previous analysis [6] the parameters $Z_{s}, Z_{q}, \psi_{V}$ and $m_{s} / \bar{m}$ were taken from ref. [3] where $\operatorname{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right)$ and $\operatorname{BR}(\phi \rightarrow \eta \gamma)$ were fitted together with other $V \rightarrow P \gamma$ decay rates ( $V$ indicates the vector mesons $\rho, \omega, \phi$ and $P$ the pseudoscalars $\pi^{0}, \eta, \eta^{\prime}$ ) assuming no $\eta^{\prime}$ gluonium content. We fitted [6] our measurement

$$
R_{\phi}=\frac{\mathrm{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right)}{\operatorname{BR}(\phi \rightarrow \eta \gamma)}=\left(4.77 \pm 0.09_{\text {stat. }} \pm 0.19_{\text {syst. }}\right) \times 10^{-3}
$$

together with the available data [9] on $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right), \Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$ and $\Gamma\left(\eta^{\prime} \rightarrow \omega \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$. The dependence of these ratios on the mixing angle $\psi_{P}$ and the gluonium content $\psi_{G}$ is given by the following equations:

$$
\begin{align*}
X_{\eta^{\prime}} & =\sin \psi_{P} \cos \psi_{G}, \quad Y_{\eta^{\prime}}=\cos \psi_{P} \cos \psi_{G} \\
\frac{\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)} & =\frac{1}{9}\left(\frac{m_{\eta^{\prime}}}{m_{\pi^{0}}}\right)^{3}\left(5 \frac{f_{\pi}}{f_{q}} \cos \psi_{G} \sin \psi_{P}+\sqrt{2} \frac{f_{\pi}}{f_{s}} \cos \psi_{G} \cos \psi_{P}\right)^{2}  \tag{1.4}\\
\frac{\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)} & =3 \frac{Z_{q}^{2}}{\cos ^{2}\left(\psi_{V}\right)}\left(\frac{m_{\eta^{\prime}}^{2}-m_{\rho}^{2}}{m_{\omega}^{2}-m_{\pi}^{2}} \cdot \frac{m_{\omega}}{m_{\eta^{\prime}}}\right)^{3} X_{\eta^{\prime}}^{2}  \tag{1.5}\\
\frac{\Gamma\left(\eta^{\prime} \rightarrow \omega \gamma\right)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)} & =\frac{1}{3}\left(\frac{m_{\eta^{\prime}}^{2}-m_{\omega}^{2}}{m_{\omega}^{2}-m_{\pi}^{2}} \cdot \frac{m_{\omega}}{m_{\eta^{\prime}}}\right)^{3}\left[Z_{q} X_{\eta^{\prime}}+2 \frac{\bar{m}}{m_{s}} Z_{s} \cdot \tan \psi_{V} Y_{\eta^{\prime}}\right]^{2} . \tag{1.6}
\end{align*}
$$

where $f_{\pi}$ is the pion decay constant and $f_{q}$ and $f_{s}$ are the decay constants of the isospin singlet states (mainly $\eta, \eta^{\prime}$ mesons) in the no-anomaly limit [5]. The fit result was $\psi_{P}=$ $(39.7 \pm 0.7)^{\circ}$ and $Z_{G}^{2}=\sin ^{2} \psi_{G}=0.14 \pm 0.04, P\left(\chi^{2}\right)=49 \%$. Imposing $\psi_{G}=0$ the $\chi^{2}$ probability of the fit decreased to $1 \%$.

In ref. [4], a procedure similar to [3] has been adopted, but they fitted also the gluonium component in the $\eta^{\prime}$ wave function that was previously fixed at zero. The result $Z_{G}^{2}=$ $0.04 \pm 0.09$ deviates $1 \sigma$ from our value but with a larger error. In refs. [4] and [7] this difference was attributed to the use in our fit of the parameters $Z_{s}$ and $Z_{q}$ obtained in ref. [3] assuming no gluonium content. However further tests of the fit procedure showed that $Z_{G}^{2}$ and $\psi_{P}$ are marginally sensitive to large variations of $Z_{q}$ and $Z_{s}$ [10]. Here we repeat the fit with a larger number of free parameters, including $Z_{s}$ and $Z_{q}$.

## 2 Fit description

In order to enlarge the set of parameters used in the fit we add to the equations (1.4)-(1.6) the following further relations that can be derived directly from [4]:

$$
\begin{align*}
\frac{\Gamma(\omega \rightarrow \eta \gamma)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)} & =\frac{1}{9}\left[Z_{q} \cos \psi_{P}-2 \frac{\bar{m}}{m_{s}} Z_{s} \tan \psi_{V} \sin \psi_{P}\right]^{2}\left(\frac{m_{\omega}^{2}-m_{\eta}^{2}}{m_{\omega}^{2}-m_{\pi^{0}}^{2}}\right)^{3}  \tag{2.1}\\
\frac{\Gamma(\rho \rightarrow \eta \gamma)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)} & =Z_{q}^{2} \frac{\cos ^{2} \psi_{P}}{\cos ^{2} \psi_{V}}\left(\frac{m_{\rho}^{2}-m_{\eta}^{2}}{m_{\omega}^{2}-m_{\pi^{0}}^{2}} \frac{m_{\omega}}{m_{\rho}}\right)^{3}  \tag{2.2}\\
\frac{\Gamma(\phi \rightarrow \eta \gamma)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)} & =\frac{1}{9}\left[Z_{q} \tan \psi_{V} \cos \psi_{P}+2 \frac{\bar{m}}{m_{s}} Z_{s} \sin \psi_{P}\right]^{2}\left(\frac{m_{\phi}^{2}-m_{\eta}^{2}}{m_{\omega}^{2}-m_{\pi^{0}}^{2}} \frac{m_{\omega}}{m_{\phi}}\right)^{3}  \tag{2.3}\\
\frac{\Gamma\left(\phi \rightarrow \pi^{0} \gamma\right)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)} & =\tan ^{2} \psi_{V} \cdot\left(\frac{m_{\phi}^{2}-m_{\pi^{0}}^{2}}{m_{\omega}^{2}-m_{\pi^{0}}^{2}} \frac{m_{\omega}}{m_{\phi}}\right)^{3}  \tag{2.4}\\
\frac{\Gamma\left(K^{*+} \rightarrow K^{+} \gamma\right)}{\Gamma\left(K^{* 0} \rightarrow K^{0} \gamma\right)} & =\left(\frac{2 \frac{m_{s}}{\bar{m}}-1}{1+\frac{m_{s}}{\bar{m}}}\right)^{2} \cdot\left(\frac{m_{K^{*+}}^{2}-m_{K^{+}}^{2}}{m_{K^{* 0}}^{2}-m_{K^{0}}^{2}} \cdot \frac{m_{K^{* 0}}}{m_{K^{*+}}}\right)^{3} \tag{2.5}
\end{align*}
$$

Notice that, differently from [4] where the $\mathrm{VP} \gamma$ couplings are fitted, we fit directly ratios of partial decay widths. This allows both to reduce the parameters involved in the fit (two of them cancel out in the ratios), and to simplify the error treatment using quantities proportional (directly or inversely) to the experimental measurements. As an example, a ratio of $\Gamma^{\prime} s$ is written as:

$$
\frac{\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)}=\frac{\operatorname{BR}\left(\eta^{\prime} \rightarrow \rho \gamma\right)}{\operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right)} \frac{\Gamma_{\eta^{\prime}}}{\Gamma_{\omega}}
$$

In this way the correlation matrix among the $\eta^{\prime}$ branching ratios and the decay widths can be used directly. The fit is performed minimising the $\chi^{2}$ function:

$$
\chi^{2}=\sum_{i, j}\left(y_{i}-y_{i}^{\mathrm{th}}\right)\left(\mathbf{V}^{-1}\right)_{i j}\left(y_{j}-y_{j}^{\text {th }}\right)
$$

where $y_{i}$ are the experimental measurements of the ratios on the left side of equations (1.4)(1.6) and (2.1)-(2.5), $y_{i}^{\text {th }}$ are the theoretical predictions on the right side of the same equations and $\mathbf{V}^{-1}$ is the inverse of the covariance matrix. This last quantity is obtained summing the contribution from the experimental error on branching ratios, decay widths

| $\rho \gamma$ | -0.34 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{0} \pi^{0} \eta$ | -0.78 | -0.29 |  |  |  |  |
| $\omega \gamma$ | -0.35 | -0.24 | 0.32 |  |  |  |
| $\gamma \gamma$ | -0.26 | -0.12 | 0.26 | 0.08 |  |  |
| $3 \pi^{0}$ | -0.28 | -0.11 | 0.35 | 0.11 | 0.09 |  |
| $\Gamma_{\eta^{\prime}}$ | 0.32 | -0.02 | -0.24 | -0.05 | -0.88 | -0.08 |
|  | $\pi^{+} \pi^{-} \eta$ | $\rho \gamma$ | $\pi^{0} \pi^{0} \eta$ | $\omega \gamma$ | $\gamma \gamma$ | $3 \pi^{0}$ |

Table 1. Correlation matrix of the $\eta^{\prime}$ branching ratios from PDG-2006 fit [9].
and their correlations and the uncertainty from theoretical inputs. The method is the same of our previous fit [6], but only the parameters $f_{q} / f_{\pi}=1.00 \pm 0.01$ and $f_{s} / f_{\pi}=$ $1.4 \pm 0.014$ [11] are taken as input, while in the past also $Z_{s}, Z_{q}, \psi_{V}$ and $m_{s} / \bar{m}$ were fixed. The parameters $f_{q} / f_{\pi}$ and $f_{s} / f_{\pi}$ involve only the ratio $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$. The contribution from theoretical error is evaluated by standard error propagation:

$$
\mathbf{V}^{\mathrm{th}}=\mathbf{A C A} \mathbf{A}^{\mathrm{T}}
$$

where $\mathbf{C}$ is the covariance matrix of the uncorrelated parameters $x_{1}=f_{q} / f_{\pi}$ and $x_{2}=f_{s} / f_{\pi}$ and $\mathbf{A}$ is:

$$
(\mathbf{A})_{i j}=\frac{\partial y_{i}^{\mathrm{th}}}{\partial x_{j}}
$$

The covariance matrix $\mathbf{V}$ is indeed:

$$
\mathbf{V}=\mathbf{V}^{\exp }+\mathbf{V}^{\mathrm{th}}
$$

where $\mathbf{V}^{\text {exp }}$ is the covariance matrix of the data used in the fit. Particularly relevant is the correlation between the $\eta^{\prime}$ branching fractions and the decay widths shown in table 1 .

The $\eta^{\prime}$ width and the $\eta^{\prime} \rightarrow \gamma \gamma$ branching ratio are $88 \%$ correlated. This is because the $\eta^{\prime}$ width is evaluated dividing the $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)$, obtained by measuring the cross section $\sigma\left(e^{+} e^{-} \rightarrow \eta^{\prime} e^{+} e^{-}\right)$, by the $\eta^{\prime} \rightarrow \gamma \gamma$ branching ratio. The fit results and the correlation matrix are shown in table 2. The gluonium fraction $Z_{G}^{2}=0.105 \pm 0.037$ is $2.8 \sigma$ from zero. In order to identify the measurements which require the presence of the gluonium in the $\eta^{\prime}$ we have repeated the fit fixing $Z_{G}$ at zero. The results of the fit are shown in table 2. The $\chi^{2}$ probability is now quite low, reflecting the $2.8 \sigma$ effect seen in the previous fit, while the pseudoscalar mixing angle is quite stable.

In figure 1 we show for each measurement the pulls of the two fits, defined as $p_{i}=$ $\left(y_{i}-y_{i}^{\mathrm{th}}\right) / \sigma_{y_{i}}$. The measurement which does not fit in the no-gluonium hypothesis is the ratio $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$, whose pull is less than -3 , bringing the $\chi^{2}$ probability to $1.1 \%$. It becomes $\sim-1$ when gluonium is allowed. We have then repeated the fit without using the $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ information. The result is compared with ref. [4] in table 3. The results of the two fits are in agreement, making it evident that the origin of the discrepancy with ref. [4] is due to their neglecting the $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ datum. In ref. [4] the couplings among the vectors and the pseudoscalar mesons are used

|  | $Z_{G}$ free | $Z_{G}=0$ |
| :---: | :---: | :---: |
| $\chi^{2} /$ ndf (CL) | $5 / 3(17 \%)$ | $13 / 4(1.1 \%)$ |
| $Z_{G}^{2}$ | $0.105 \pm 0.037$ | 0 fixed |
| $\psi_{P}$ | $(40.7 \pm 0.7)^{\circ}$ | $(41.6 \pm 0.5)^{\circ}$ |
| $Z_{q}$ | $0.866 \pm 0.025$ | $0.863 \pm 0.024$ |
| $Z_{s}$ | $0.79 \pm 0.05$ | $0.78 \pm 0.05$ |
| $\psi_{V}$ | $(3.15 \pm 0.10)^{\circ}$ | $(3.17 \pm 0.10)^{\circ}$ |
| $m_{s} / \bar{m}$ | $1.24 \pm 0.07$ | $1.24 \pm 0.07$ |


| $\psi_{P}$ | -0.513 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Z_{q}$ | 0.003 | 0.041 |  |  |  |
| $Z_{s}$ | 0.088 | -0.188 | 0.050 |  |  |
| $\psi_{V}$ | -0.068 | -0.019 | 0.150 | 0.077 |  |
| $m_{s} / \bar{m}$ | 0 | 0 | 0 | 0.935 | 0 |
|  | $Z_{G}^{2}$ | $\psi_{P}$ | $Z_{q}$ | $Z_{s}$ | $\psi_{V}$ |

Table 2. Fit results using the PDG-2006 data [9] and their correlation matrix.


Figure 1. Pulls of the fit shown in table 2, left: $Z_{G}$ free, right: $Z_{G}=0$ (fixed).
in place of the width ratio. The couplings are related to the partial decay width by the following formulae:

$$
\Gamma(V \rightarrow P \gamma)=\frac{1}{3} \frac{g_{V P \gamma}^{2}}{4 \pi}\left|\vec{p}_{\gamma}\right|^{3}, \quad \Gamma(P \rightarrow V \gamma)=\frac{g_{V P \gamma}^{2}}{4 \pi}\left|\vec{p}_{\gamma}\right|^{3}
$$

In order to make a full comparison between the two methods we have performed the fit also using the couplings and we have obtain the same results [12].

|  | Fit with PDG-2006 | Fit of <br> ref. [4] |
| :---: | :---: | :---: |
| $\chi^{2} / \mathrm{ndf}(\mathrm{CL})$ | $1.8 / 2(41 \%)$ | $4.2 / 4(38 \%)$ |
| $Z_{G}^{2}$ | $0.03 \pm 0.06$ | $0.04 \pm 0.09$ |
| $\psi_{G}$ | $(10 \pm 10)^{\circ}$ | $(12 \pm 13)^{\circ}$ |
| $\psi_{P}$ | $(41.6 \pm 0.8)^{\circ}$ | $(41.4 \pm 1.3)^{\circ}$ |
| $Z_{q}$ | $0.85 \pm 0.03$ | $0.86 \pm 0.03$ |
| $Z_{s}$ | $0.78 \pm 0.05$ | $0.79 \pm 0.05$ |
| $\psi_{V}$ | $(3.16 \pm 0.10)^{\circ}$ | $(3.2 \pm 0.1)^{\circ}$ |
| $m_{s} / \bar{m}$ | $1.24 \pm 0.07$ | $1.24 \pm 0.07$ |

Table 3. Comparison among the fit results without the $\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma$ measurements and the results of ref. [4]. PDG-2006 data [9] have been used in both fits.

|  | $Z_{G}$ free | $Z_{G}=0$ fixed |
| :---: | :---: | :---: |
| $\chi^{2} /$ ndf (CL) | $7.9 / 3(5 \%)$ | $15 / 4\left(5 \times 10^{-3}\right)$ |
| $Z_{G}^{2}$ | $0.097 \pm 0.037$ | 0 fixed |
| $\psi_{P}$ | $(41.0 \pm 0.7)^{\circ}$ | $(41.7 \pm 0.5)^{\circ}$ |
| $Z_{q}$ | $0.86 \pm 0.02$ | $0.86 \pm 0.02$ |
| $Z_{s}$ | $0.79 \pm 0.05$ | $0.78 \pm 0.05$ |
| $\psi_{V}$ | $(3.17 \pm 0.09)^{\circ}$ | $(3.19 \pm 0.09)^{\circ}$ |
| $m_{s} / \bar{m}$ | $1.24 \pm 0.07$ | $1.24 \pm 0.07$ |

Table 4. Fit results using the PDG-2008 data.

| $\psi_{P}$ | -0.502 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Z_{q}$ | -0.072 | 0.161 |  |  |  |
| $Z_{s}$ | 0.081 | -0.180 | 0.028 |  |  |
| $\psi_{V}$ | -0.082 | 0.013 | 0.169 | 0.078 |  |
| $m_{s} / \bar{m}$ | 0 | 0 | 0 | 0.940 | 0 |
|  | $Z_{G}^{2}$ | $\psi_{P}$ | $Z_{q}$ | $Z_{s}$ | $\psi_{V}$ |

Table 5. Correlation matrix from the fit shown in table 4.

## 3 Update with the recent PDG results

In the Review of Particle Physics [13] new measurements of the $\rho, \omega, \eta$ and $\eta^{\prime}$ mesons have been included, which change slightly the partial decay widths used in the fit. Therefore we repeat the fit using these updated values together with our $R_{\phi}$ measurement. All the correlation coefficients among the measurements are taken into account in the fit. The results of the fit are shown in table 4 and the correlation matrix in table 5 ; the pulls of the fit are shown in figure 2.

The results in table 4 show that the gluonium hypothesis is still highly favoured with respect to the null gluonium hypothesis. Nevertheless the fit probability is quite low also in the gluonium hypothesis: it goes from $17 \%$ using PDG06 data to $5 \%$ using PDG08 data.


Figure 2. Pulls of the fit using PDG-2008 data, left: $Z_{G}$ free, right: $Z_{G}=0$ (fixed).

The reason of the worsening of the fit is found comparing the pulls of the new fit (figure 2) with the previous one (figure 1). In particular, the pull of the ratio $\Gamma(\omega \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$ goes from -0.93 using PDG-2006 data to -1.5 using PDG-2008 while the pull of the ratio $\Gamma(\rho \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$ goes from -0.14 to +0.39 . This happens because the PDG estimate of the $\operatorname{BR}(\omega \rightarrow \eta \gamma)$ has changed from $(4.9 \pm 0.5) \times 10^{-4}$ to $(4.6 \pm 0.4) \times 10^{-4}$, lowering the $\Gamma$ 's ratio and worsening the pull. ${ }^{1}$

The $\operatorname{BR}(\omega \rightarrow \eta \gamma)$ and $\operatorname{BR}(\rho \rightarrow \eta \gamma)$ PDG values are dominated by the measurement of the $e^{+} e^{-} \rightarrow \eta \gamma$ cross section by SND [14] as a function of $\sqrt{s}$ in the $\rho, \omega, \phi$ mass range. From the measured cross section they extract the $\rho, \omega$ partial decay widths assuming the Vector Meson Dominance model and a parametrisation for the $\rho^{\prime}$ resonance. Some correlation is therefore expected between the $\rho$ and the $\omega$ partial decay widths which are not discussed in ref. [14], moreover the decay widths are model dependent. The average value reported by PDG-2008, $\operatorname{BR}(\omega \rightarrow \eta \gamma)=(6.3 \pm 1.3) \times 10^{-4}$, is dominated by a model independent measurement [15] and is $1.2 \sigma$ away from the PDG fit. Using this value for $\operatorname{BR}(\omega \rightarrow \eta \gamma)$ we obtain a much better $\chi^{2}$ probability: $P\left(\chi^{2}\right)=28 \%$ in the gluonium hypothesis and $1.1 \%$ fixing the gluonium at zero [12]. Both gluonium content and pseudoscalar mixing angle are unchanged $\left(Z_{G}^{2}=0.11 \pm 0.04, \psi_{P}=(40.6 \pm 0.7)^{\circ}\right.$ in the gluonium hypothesis). Therefore we will use the average value for $\operatorname{BR}(\omega \rightarrow \eta \gamma)$ in the following.

[^2]|  | $Z_{G}$ free | $Z_{G}=0$ fixed |
| :---: | :---: | :---: |
| $\chi^{2} / \mathrm{ndf}(\mathrm{CL})$ | $4.6 / 3(20 \%)$ | $14.7 / 4(0.5 \%)$ |
| $Z_{G}^{2}$ | $0.115 \pm 0.036$ | 0 |
| $\psi_{P}$ | $(40.4 \pm 0.6)^{\circ}$ | $(41.4 \pm 0.5)^{\circ}$ |
| $Z_{q}$ | $0.936 \pm 0.025$ | $0.927 \pm 0.023$ |
| $Z_{s}$ | $0.83 \pm 0.05$ | $0.82 \pm 0.05$ |
| $\psi_{V}$ | $(3.32 \pm 0.09)^{\circ}$ | $(3.34 \pm 0.09)^{\circ}$ |
| $m_{s} / \bar{m}$ | $1.24 \pm 0.07$ | $1.24 \pm 0.07$ |

Table 6. Fit results using PDG-2008 inputs, $\operatorname{BR}(\omega \rightarrow \eta \gamma)$ from PDG direct measurement average and the $\operatorname{KLOE} \operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right)$ and $R_{\phi}$. The equations (4.1) have been used for the $f_{q} / f_{\pi}$ and $f_{s} / f_{\pi}$ parameters.

| $\psi_{P}$ | -0.507 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Z_{q}$ | 0.063 | -0.018 |  |  |  |
| $Z_{s}$ | 0.092 | -0.189 | 0.013 |  |  |
| $\psi_{V}$ | -0.059 | -0.012 | 0.045 | 0.028 |  |
| $m_{s} / \bar{m}$ | -0.002 | 0.003 | 0.001 | 0.949 | 0.000 |
|  | $Z_{G}^{2}$ | $\psi_{P}$ | $Z_{q}$ | $Z_{s}$ | $\psi_{V}$ |

Table 7. Correlation matrix of the fit shown in table 6.

## 4 Update with the new KLOE measurement of $\operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right)$

The relations (1.5), (1.6) and (2.1)-(2.4) are dependent from the $\omega \rightarrow \pi^{0} \gamma$ decay rate. Recently we have improved the measurement of this branching fraction $\operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right)=$ $(8.09 \pm 0.14) \%$ [16]. This value is about $3 \sigma$ different from the PDG 2008 value: $\operatorname{BR}(\omega \rightarrow$ $\left.\pi^{0} \gamma\right)=(8.92 \pm 0.24) \%$. We then performed the fit using our measurement of $\operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right)$.

Moreover $f_{q} / f_{\pi}$ and $f_{s} / f_{\pi}$ have been fixed according to ref. [5]. In the exact isospin symmetry approximation the relations

$$
f_{q}=f_{\pi} ; \quad f_{s}=\sqrt{2 f_{K}^{2}-f_{\pi}^{2}}
$$

hold, where $f_{\pi}$ and $f_{K}$ are the $\pi$ and $K$ decay constants. Therefore $f_{s} / f_{\pi}=\sqrt{2 f_{K}^{2} / f_{\pi}^{2}-1}$. Using $f_{K} / f_{\pi}$ from lattice calculation [18] we get:

$$
\begin{equation*}
\frac{f_{q}}{f_{\pi}}=1 \quad \frac{f_{s}}{f_{\pi}}=1.352 \pm 0.007 \tag{4.1}
\end{equation*}
$$

The results of the fit are shown in table 6 and the correlation matrix in table 7.
The $\eta-\eta^{\prime}$ mixing angle and the $\eta^{\prime}$ gluonium content are not substantially modified, but the $\chi^{2}$ probability is improved with respect to the previous fits. The $\phi-\omega$ mixing angle, $\psi_{V}$, is also slightly changed from $(3.17 \pm 0.09)^{\circ}$ to $(3.32 \pm 0.09)^{\circ}$ by our new measurement of $\operatorname{BR}\left(\omega \rightarrow \pi^{0} \gamma\right), \psi_{V}$ being directly related to the ratio $\Gamma\left(\phi \rightarrow \pi^{0} \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$ (see eq. (2.4)).


Figure 3. $68 \%$ confidence level regions of the shown measurements in the $Z_{G}^{2}, \psi_{P}$ plane.

| width ratio | fitted value | error | width ratio | fitted value | error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}$ | 570 | 35 |  |  |  |
| $\frac{\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)}$ | 0.0735 | 0.007 |  |  |  |
| $\frac{\Gamma\left(\phi \rightarrow \eta^{\prime} \gamma\right)}{\Gamma(\phi \rightarrow \eta \gamma)}$ | 0.0047 | 0.0002 |  |  |  |
| $\frac{\Gamma(\rho \rightarrow \eta \gamma)}{\Gamma\left(\omega \rightarrow \pi^{\prime} \rightarrow \omega \gamma\right)}$ | 0.0087 | 0.0010 | 0.061 | 0.004 |  |
| $\frac{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)}{\Gamma(\omega \rightarrow \eta \gamma)}$ | 0.0064 | 0.0015 |  |  |  |
| $\frac{\Gamma(\omega \rightarrow \eta \gamma)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)}$ | 0.072 | 0.003 |  |  |  |
| $\frac{\Gamma\left(\phi \rightarrow \pi^{0} \gamma\right)}{\Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)}$ | 0.0079 | 0.0004 |  |  |  |
| $\frac{\Gamma\left(K^{*+} \rightarrow K^{+} \gamma\right)}{\Gamma\left(K^{* 0} \rightarrow K^{0} \gamma\right)}$ | 0.43 | 0.06 |  |  |  |
|  |  |  |  |  |  |

Table 8. Fitted values of the $\Gamma$ ratios.
In figure 3 we show the $68 \% \mathrm{CL}$ contour of the $\eta^{\prime}$ related measurements in the $Z_{G}^{2}$, $\psi_{P}$ plane where the contribution of each measurement to the fit results can be appreciated. The best fit values of the width ratios are shown in table 8 together with their correlation coefficients in table 9.

## 5 Prospects with improved measurements

We have shown that within the precision of the available data the crucial measurement sensitive to the $\eta^{\prime}$ gluonium content is $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$. The theoretical framework used to describe $\eta^{\prime} \rightarrow \gamma \gamma$ and $V \rightarrow P \gamma$ transition is different. In fact while in the first case we have a quark-antiquark annihilation into two photons, in the second case we have a transition among two mesons with photon emission via the spin flip of one of the two quarks. Therefore it is important both to reach a sensitivity to the gluonium independently from the $\eta^{\prime} \rightarrow \gamma \gamma$ decay and to measure again the $\eta^{\prime} \rightarrow \gamma \gamma$ branching ratio.

| $\eta^{\prime} \rho \gamma$ | 0.28 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\phi \eta^{\prime} \gamma$ | 0 | 0 |  |  |  |  |  |  |
| $\eta^{\prime} \omega \gamma$ | 0.24 | 0.48 | 0 |  |  |  |  |  |
| $\omega \eta \gamma$ | 0 | 0.04 | 0 | 0.28 |  |  |  |  |
| $\rho \eta \gamma$ | 0 | 0.13 | 0 | 0.08 | 0.05 |  |  |  |
| $\phi \eta \gamma$ | 0 | 0.28 | 0 | 0.18 | 0.10 | 0 |  |  |
| $\phi \pi^{0} \gamma$ | 0 | 0.17 | 0 | 0.11 | 0.06 | 0 | 0.36 |  |
| $K^{*+} K^{+} \gamma$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\eta^{\prime} \gamma \gamma$ | $\eta^{\prime} \rho \gamma$ | $\phi \eta^{\prime} \gamma$ | $\eta^{\prime} \omega \gamma$ | $\omega \eta \gamma$ | $\rho \eta \gamma$ | $\phi \eta \gamma$ | $\phi \pi^{0} \gamma$ |

Table 9. Correlation coefficients of the best-fitted values.

|  | with $\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma$ | without $\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma$ |
| :---: | :---: | :---: |
| $Z_{G}^{2}$ | $0.12 \pm 0.03$ | $0.11 \pm 0.04$ |
| $\psi_{P}$ | $(40.5 \pm 0.6)^{\circ}$ | $(40.5 \pm 0.6)^{\circ}$ |
| $Z_{N S}$ | $0.93 \pm 0.02$ | $0.93 \pm 0.03$ |
| $Z_{S}$ | $0.83 \pm 0.05$ | $0.83 \pm 0.05$ |
| $\psi_{V}$ | $(3.32 \pm 0.08)^{\circ}$ | $(3.32 \pm 0.09)^{\circ}$ |
| $m_{s} / \bar{m}$ | $1.24 \pm 0.07$ | $1.24 \pm 0.07$ |

Table 10. Fit values assuming $1 \%$ error on the $\eta^{\prime}$ branching fractions: left: using $\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma$, right: without using $\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma$.

The $\eta^{\prime} \rightarrow \gamma \gamma$ branching ratio affects directly the $\eta^{\prime}$ decay width while the $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$ and the $\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$ branching ratios affect the systematic errors on the $R_{\phi}$ measurement [6]. The increase of the precision on all main $\eta^{\prime}$ branching fractions at $1 \%$ level could lead the gluonium contribution to $\sim 4 \sigma$ (see table 10 ). The results shown in the table are obtained assuming as central value of all measurements the width ratios shown in table 8 and assigning to all $\eta^{\prime}$ branching ratios a $1 \%$ error (the error on $\Gamma_{\eta^{\prime}}$ and $R_{\phi}$ has been recomputed accordingly); the correlation matrix is taken equal to the present measurements. The fit gives a large $\eta^{\prime}$ gluonium component even without using the $\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma$ measurement (see table 10, right column).

In figure 4 the expected $68 \% \mathrm{CL}$ contour in the plane $\psi_{P}, Z_{G}^{2}$ is shown. Notice that the $\eta^{\prime} \rightarrow \gamma \gamma$ measurement would be not needed anymore to have a significative gluonium component.

A big improvement in the gluonium content determination can be obtained by measuring the $\eta^{\prime}$ decay width directly through the measurement of $\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma^{*} \gamma^{*} \rightarrow\right.$ $\left.e^{+} e^{-} \eta^{\prime}\right)$. The measurement of this cross section at $1 \%$ level and the $\eta^{\prime} \rightarrow \gamma \gamma$ branching ratio at the same level of accuracy would allow to determine the $\eta^{\prime}$ width:

$$
\Gamma_{\eta^{\prime}}=\frac{\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)}{\operatorname{BR}\left(\eta^{\prime} \rightarrow \gamma \gamma\right)}
$$

with a fractional error of $\sim 1.4 \%$. In figure 4 , right the $68 \% \mathrm{CL}$ contours in the $\left(\psi_{P}, Z_{G}^{2}\right)$


Figure 4. Future prospects: one sigma confidence regions in the $\left(\psi_{P}, Z_{G}^{2}\right)$ plane assuming present fitted measurements but with reduced errors: left: with $1 \%$ error on $\eta^{\prime}$ branching ratios, right: as before plus $1 \%$ precision on $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)$.
parameter plane are shown for all $\eta^{\prime}$ related measurements. The improvement in the fit accuracy is evident. The gluonium contribution would be measured at $\sim 5 \sigma$.

## 6 Conclusions

The origin of the difference between the KLOE result [6] on the $\eta^{\prime}$ gluonium content and ref. [4] is the use of the $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ measurement. A global fit to all measured $V \rightarrow P \gamma$ and $P \rightarrow V \gamma$ transitions of light mesons has been performed extracting all the relevant parameters. The new results are slightly different from our previous results but confirm the presence of a significative gluonium contribution in the $\eta^{\prime}$ meson. The origin of this contribution has been investigated and found to stem mainly from the $\Gamma\left(\eta^{\prime} \rightarrow\right.$ $\gamma \gamma) / \Gamma\left(\pi^{0} \gamma \gamma\right)$ measurement. The fit has been updated with all recent measurements from PDG [13] and some disagreement with the PDG fitted value of the $\mathrm{BR}(\omega \rightarrow \eta \gamma)$ has been found. The average of the $\omega \rightarrow \eta \gamma$ branching ratio is therefore preferred to the PDG fit and a better fit is obtained while the gluonium content and the mixing angle are unaffected. The result has been updated using the recent KLOE measurement of the $\omega \rightarrow \pi^{0} \gamma$ branching ratio and the lattice results for $f_{q} / f_{\pi}$ and $f_{s} / f_{\pi}$ assuming exact isospin symmetry. The mixing angle and the gluonium content are again marginally affected by this measurement while a slightly larger $\phi-\omega$ mixing angle is obtained.

Finally, we have estimated the impact of future improvements in the measurements of the $\eta^{\prime}$ branching ratios and $\eta^{\prime}$ width in the gluonium content determination. A $5 \sigma$ evidence could be obtained with a $1 \%$ precision on each measurement.

## Acknowledgments

We would like to thank R. Escribano for many useful discussions. We want to thank our technical staff: G. F. Fortugno and F. Sborzacchi for their dedicated work to ensure an efficient operation of the KLOE computing facilities. This work was supported in part by EURODAPHNE, contract FMRX-CT98-0169; by the German Federal Ministry of Education and Research (BMBF) contract 06-KA-957; by the German Research Foundation (DFG),'Emmy Noether Programme', contracts DE839/1-4; and by the EU Integrated Infrastructure Initiative HadronPhysics Project under contract number RII3-CT-2004-506078.

## References

[1] M. Benayoun, L. DelBuono, S. Eidelman, V.N. Ivanchenko and H.B. O'Connell, Radiative decays, nonet symmetry and $\mathrm{SU}(3)$ breaking, Phys. Rev. D 59 (1999) 114027 [hep-ph/9902326] [SPIRES];
P. Ball, J.M. Frere and M. Tytgat, Phenomenological evidence for the gluon content of eta and eta-prime, Phys. Lett. B 365 (1996) 367 [hep-ph/9508359] [SPIRES];
F.J. Gilman and R. Kauffman, The $\eta \eta^{\prime}$ mixing angle, Phys. Rev. D 36 (1987) 2761 [Erratum ibid. D 37 (1988) 3348] [SPIRES].
[2] J.L. Rosner, Quark content of neutral mesons, Phys. Rev. D 27 (1983) 1101 [SPIRES].
[3] A. Bramon, R. Escribano and M.D. Scadron, Radiative V $P \gamma$ transitions and $\eta \eta^{\prime}$ mixing, Phys. Lett. B 503 (2001) 271 [hep-ph/0012049] [SPIRES].
[4] R. Escribano and J. Nadal, On the gluon content of the $\eta$ and $\eta^{\prime}$ mesons, JHEP 05 (2007) 006 [hep-ph/0703187] [SPIRES].
[5] E. Kou, On the $\eta^{\prime}$ gluonic admixture, Phys. Rev. D 63 (2001) 054027 [hep-ph/9908214] [SPIRES].
[6] KLOE collaboration, F. Ambrosino et al., Measurement of the pseudoscalar mixing angle and eta' gluonium content with KLOE detector, Phys. Lett. B 648 (2007) 267 [hep-ex/0612029] [SPIRES].
[7] C.E. Thomas, Composition of the pseudoscalar $\eta$ and $\eta^{\prime}$ mesons, JHEP 10 (2007) 026 [arXiv:0705.1500] [SPIRES].
[8] H.-Y. Cheng, H.-n. Li and K.-F. Liu, Pseudoscalar glueball mass from $\eta-\eta^{\prime}-G$ mixing, Phys. Rev. D 79 (2009) 014024 [arXiv:0811.2577] [SPIRES].
[9] W.-M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1 [SPIRES].
[10] KLOE collaboration, B. Di Micco, $\eta, \eta^{\prime}$ mixing angle and $\eta^{\prime}$ gluonium content extraction from the KLOE $R(\phi)$ measurement, Eur. Phys. J. A 38 (2008) 129 [SPIRES].
[11] T. Feldmann, Quark structure of pseudoscalar mesons, Int. J. Mod. Phys. A 15 (2000) 159 [hep-ph/9907491] [SPIRES].
[12] B. Di Micco, A global fit to determine the pseudoscalar mixing angle and the gluonium content of the $\eta$ ' meson, KLOE note n. $222 \mathrm{http}: / /$ www.lnf.infn.it/kloe/.
[13] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].
[14] M.N. Achasov et al., Reanalysis of the $e^{+} e^{-} \rightarrow \eta \gamma$ reaction cross section, Phys. Rev. D 76 (2007) 077101 [arXiv:0709.1007] [SPIRES].
[15] Crystal Barrel collaboration, Measurement of the $\omega \rightarrow \eta \gamma$ decay branching ratio, Phys. Lett. B 411 (1997) 361 [SPIRES].
[16] KLOE collaboration, F. Ambrosino et al., Study of the process $e^{+} e^{-} \rightarrow \omega \pi^{0}$ in the $\phi$-meson mass region with the KLOE detector, Phys. Lett. B 669 (2008) 223 [arXiv:0807.4909] [SPIRES].
[17] CMD-2 collaboration, R.R. Akhmetshin et al., Study of the process $e^{+} e^{-} \rightarrow \eta \gamma$ in c.m. Energy Range 600-1380 MeV at CMD-2, Phys. Lett. B 509 (2001) 217 [hep-ex/0103043] [SPIRES].
[18] HPQCD collaboration, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, High precision determination of the $\pi, K, D$ and $D_{s}$ decay constants from lattice $Q C D$, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [SPIRES].


[^0]:    ${ }^{a}$ Laboratori Nazionali di Frascati dell'INFN, Via E. Fermi n. 40, Frascati, Italy
    ${ }^{b}$ Institut für Kernphysik, Johannes Gutenberg - Universität Mainz, Johann-Joachim-Becher-Weg 45, Mainz, Germany
    ${ }^{\text {c }}$ Dipartimento di Scienze Fisiche dell'Università "Federico II", Complesso Universitario di Monte Sant'Angelo - via Cintia, Napoli, Italy
    ${ }^{d}$ INFN Sezione di Napoli,
    Complesso Universitario di Monte Sant'Angelo - via Cintia, Napoli, Italy
    ${ }^{e}$ Dipartimento di Energetica dell'Università "La Sapienza", Via Antonio Scarpa 14, Roma, Italy
    ${ }^{f}$ Dipartimento di Fisica dell'Università "La Sapienza", Città Universitaria di Roma "La Sapienza" - p.le Aldo Moro 2, Roma, Italy
    ${ }^{g}$ INFN Sezione di Roma,
    Città Universitaria di Roma "La Sapienza" - p.le Aldo Moro 2, Roma, Italy
    ${ }^{h}$ Dipartimento di Fisica dell'Università "Tor Vergata",
    Via della Ricerca Scientifica 1, Roma, Italy
    ${ }^{i}$ INFN Sezione di Roma Tor Vergata,
    Via della Ricerca Scientifica 1, Via della Vasca Navale 84, Roma, Italy

[^1]:    ${ }^{1}$ corresponding author

[^2]:    ${ }^{1}$ A fit without the $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ ratio has been performed in order to check its effect on the $\omega \rightarrow \eta \gamma$ and $\rho \rightarrow \eta \gamma$ pulls. In this case the $\chi^{2} / \mathrm{ndf}$ of the fit is high also in the null gluonium hypothesis, nevertheless the $\Gamma(\omega \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$ pull is -0.68 while the $\Gamma(\rho \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$ pull is +1.1 . In other words the $\operatorname{BR}(\omega \rightarrow \eta \gamma)$ fits better while the $\operatorname{BR}(\rho \rightarrow \eta \gamma)$ fits worse. The difference of the two measurements from the best fit is still $\sim 2 \sigma$, therefore the poor $\chi^{2}$ with PDG-2008 data is not due to $\eta^{\prime} \rightarrow \gamma \gamma$ but to the inconsistency between $\Gamma(\omega \rightarrow \eta \gamma)$ and $\Gamma(\rho \rightarrow \eta \gamma)$ measurements.

